{"title":"Association rules mining between service demands and remanufacturing services","authors":"Wenbin Zhou, Xuhui Xia, Zelin Zhang, Lei Wang","doi":"10.1017/S0890060420000396","DOIUrl":null,"url":null,"abstract":"Abstract The potential relationship between service demands and remanufacturing services (RMS) is essential to make the decision of a RMS plan accurately and improve the efficiency and benefit. In the traditional association rule mining methods, a large number of candidate sets affect the mining efficiency, and the results are not easy for customers to understand. Therefore, a mining method based on binary particle swarm optimization ant colony algorithm to discover service demands and remanufacture services association rules is proposed. This method preprocesses the RMS records, converts them into a binary matrix, and uses the improved ant colony algorithm to mine the maximum frequent itemset. Because the particle swarm algorithm determines the initial pheromone concentration of the ant colony, it avoids the blindness of the ant colony, effectively enhances the searchability of the algorithm, and makes association rule mining faster and more accurate. Finally, a set of historical RMS record data of straightening machine is used to test the validity and feasibility of this method by extracting valid association rules to guide the design of RMS scheme for straightening machine parts.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"240 - 250"},"PeriodicalIF":1.7000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0890060420000396","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060420000396","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract The potential relationship between service demands and remanufacturing services (RMS) is essential to make the decision of a RMS plan accurately and improve the efficiency and benefit. In the traditional association rule mining methods, a large number of candidate sets affect the mining efficiency, and the results are not easy for customers to understand. Therefore, a mining method based on binary particle swarm optimization ant colony algorithm to discover service demands and remanufacture services association rules is proposed. This method preprocesses the RMS records, converts them into a binary matrix, and uses the improved ant colony algorithm to mine the maximum frequent itemset. Because the particle swarm algorithm determines the initial pheromone concentration of the ant colony, it avoids the blindness of the ant colony, effectively enhances the searchability of the algorithm, and makes association rule mining faster and more accurate. Finally, a set of historical RMS record data of straightening machine is used to test the validity and feasibility of this method by extracting valid association rules to guide the design of RMS scheme for straightening machine parts.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.