{"title":"Finite element simulation and frequency optimization for wireless signal transmission through RC structures","authors":"Jingkang Shi, Feiyang Wang, Dongming Zhang, Hong-wei Huang","doi":"10.12989/SSS.2021.28.3.319","DOIUrl":null,"url":null,"abstract":"The enclosed civil structures pose a challenging environment for wireless communication between sensor nodes. Wireless electromagnetic (EM) signal attenuates significantly when transmitting through reinforced concrete structures. This paper simulates the signal attenuation for plain concrete, pure steel rebar lattice and reinforced concrete using finite element method (FEM) in Ansoft High Frequency Structure Simulator (HFSS). Jonscher model is found to be a better concrete dielectric model than Debye model from the attenuation test results. FEM simulation for signal attenuation of reinforced concrete (RC) slab is validated by finite difference time domain (FDTD) simulation and test results from literature. Optimal frequency to minimize the signal attenuation through RC structure is in the range of 0.35 GHz ~ 0.5 GHz. Resonance occurs at t / (λc/4) = 2n and t / (λc/4) = 2n + 1, n = 1, 2, 3, 4, ... for low concrete volumetric water content (VWC). Signal attenuation is highly linear with slab thickness t for high concrete VWC. 433 MHz is suggested for real application of wireless sensor network considering the antenna size and optimization results. FEM simulation is validated by the experiment using intact wireless sensor nodes.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"28 1","pages":"319"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.28.3.319","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
The enclosed civil structures pose a challenging environment for wireless communication between sensor nodes. Wireless electromagnetic (EM) signal attenuates significantly when transmitting through reinforced concrete structures. This paper simulates the signal attenuation for plain concrete, pure steel rebar lattice and reinforced concrete using finite element method (FEM) in Ansoft High Frequency Structure Simulator (HFSS). Jonscher model is found to be a better concrete dielectric model than Debye model from the attenuation test results. FEM simulation for signal attenuation of reinforced concrete (RC) slab is validated by finite difference time domain (FDTD) simulation and test results from literature. Optimal frequency to minimize the signal attenuation through RC structure is in the range of 0.35 GHz ~ 0.5 GHz. Resonance occurs at t / (λc/4) = 2n and t / (λc/4) = 2n + 1, n = 1, 2, 3, 4, ... for low concrete volumetric water content (VWC). Signal attenuation is highly linear with slab thickness t for high concrete VWC. 433 MHz is suggested for real application of wireless sensor network considering the antenna size and optimization results. FEM simulation is validated by the experiment using intact wireless sensor nodes.
期刊介绍:
An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include:
Sensors/Actuators(Materials/devices/ informatics/networking)
Structural Health Monitoring and Control
Diagnosis/Prognosis
Life Cycle Engineering(planning/design/ maintenance/renewal)
and related areas.