Study of the unified strength theory for seismic response of frame building on loess considering soil‐structure interaction

IF 1.8 3区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Z. Xiong, Leyi Lin, Qiren Sun, Xuan Chen
{"title":"Study of the unified strength theory for seismic response of frame building on loess considering soil‐structure interaction","authors":"Z. Xiong, Leyi Lin, Qiren Sun, Xuan Chen","doi":"10.1002/tal.2038","DOIUrl":null,"url":null,"abstract":"To investigate the effect of soil‐structure interaction (SSI) on the seismic response of frame buildings on collapsible loess, the secondary development of Abaqus was used to realize the embedding of the unified strength theory constitutive model. Meanwhile, a new nonlinear elastic model generated by the unified strength theory (b, the failure criterion parameter in the unified strength theory, equals 0.5) was developed. Seven‐ and nine‐story frame buildings were selected as engineering examples in this study. The outcomes indicate that the nonlinear behavior of the loess–pile has a significant effect on the dynamic interaction of both group pile foundations and the superstructure under strong earthquakes. This results in an amplification of the displacement response and a reduction in inter‐story shear force. As the foundation soil becomes softer, the K‐type distribution of both peak accelerations and inter‐story displacements along height becomes more obvious in general.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2038","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the effect of soil‐structure interaction (SSI) on the seismic response of frame buildings on collapsible loess, the secondary development of Abaqus was used to realize the embedding of the unified strength theory constitutive model. Meanwhile, a new nonlinear elastic model generated by the unified strength theory (b, the failure criterion parameter in the unified strength theory, equals 0.5) was developed. Seven‐ and nine‐story frame buildings were selected as engineering examples in this study. The outcomes indicate that the nonlinear behavior of the loess–pile has a significant effect on the dynamic interaction of both group pile foundations and the superstructure under strong earthquakes. This results in an amplification of the displacement response and a reduction in inter‐story shear force. As the foundation soil becomes softer, the K‐type distribution of both peak accelerations and inter‐story displacements along height becomes more obvious in general.
考虑土-结构相互作用的黄土框架结构地震反应统一强度理论研究
为了研究土-结构相互作用(SSI)对湿陷性黄土框架结构地震反应的影响,利用Abaqus的二次开发实现了统一强度理论本构模型的嵌入。同时,根据统一强度理论(b,统一强度理论中的失效准则参数,等于0.5)建立了一个新的非线性弹性模型。本研究选取七层和九层框架建筑作为工程实例。结果表明,黄土-桩的非线性行为对群桩基础和上部结构在强震作用下的动力相互作用有显著影响。这导致位移响应的放大和层间剪切力的减小。随着地基土的软化,峰值加速度和层间位移沿高度的K型分布总体上变得更加明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
4.20%
发文量
83
审稿时长
6-12 weeks
期刊介绍: The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this. The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics. However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信