{"title":"Is the computed speciation of copper in a wide range of Chinese soils reliable?","authors":"Bo Li, Yibing Ma, Junxing Yang","doi":"10.1080/09542299.2017.1404437","DOIUrl":null,"url":null,"abstract":"Abstract Free Cu species in soils is a key issue to its bioavailability. However, predictive models for Cu speciation across a wide range of soils were still unavailable. In this study, Cu speciation in 34 contaminated soil samples were investigated via analytical technique and predictive models. The results showed that most of free Cu2+ was underestimated when using default log KCuFA and 65% active fulvic acid as inputs in models of WHAM VI and NICA-Donnan. The best prediction was found when using either adjusted active fulvic acid from 10% to 125% for WHAM VI or from 15% to 65% for NICA-Donnan model with the RMSE < 0.32 and r2 > 0.96. In contrast, NICA-Donnan demonstrated a slightly stronger binding for Cu than WHAM VI due to extra 26% of samples was underestimated. This work presents a comprehensive database of Cu speciation and an effective attempt of free Cu2+ prediction in a wide range of Chinese soils.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"29 1","pages":"205 - 215"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2017.1404437","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2017.1404437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Free Cu species in soils is a key issue to its bioavailability. However, predictive models for Cu speciation across a wide range of soils were still unavailable. In this study, Cu speciation in 34 contaminated soil samples were investigated via analytical technique and predictive models. The results showed that most of free Cu2+ was underestimated when using default log KCuFA and 65% active fulvic acid as inputs in models of WHAM VI and NICA-Donnan. The best prediction was found when using either adjusted active fulvic acid from 10% to 125% for WHAM VI or from 15% to 65% for NICA-Donnan model with the RMSE < 0.32 and r2 > 0.96. In contrast, NICA-Donnan demonstrated a slightly stronger binding for Cu than WHAM VI due to extra 26% of samples was underestimated. This work presents a comprehensive database of Cu speciation and an effective attempt of free Cu2+ prediction in a wide range of Chinese soils.
期刊介绍:
Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences.
Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”:
Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques.
Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products.
Mobility of substance species in environment and biota, either spatially or temporally.
Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions.
Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances.
Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity.
Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.