M. Vaverková, E. Paleologos, Venkata Siva Naga Sai Goli, E. Koda, A. Mohammad, A. Podlasek, J. Winkler, Aleksandra Jakimiuk, Martin Černý, Devendra Singh
{"title":"Landfills’ environmental impacts: perspectives on biomonitoring","authors":"M. Vaverková, E. Paleologos, Venkata Siva Naga Sai Goli, E. Koda, A. Mohammad, A. Podlasek, J. Winkler, Aleksandra Jakimiuk, Martin Černý, Devendra Singh","doi":"10.1680/jenge.23.00003","DOIUrl":null,"url":null,"abstract":"Environmental regulations on landfills contain detailed instructions for the monitoring of pollution from leachate on water, air, and soil. However, references to the impact of landfills on the landscape and the need to monitor the surrounding vegetation are described only in general terms. Studies have indicated that near-surface pollution events, which are not necessarily captured by existing regulatory monitoring schemes, have affected the vegetation in the vicinity of landfills. Indications for the effects of pollution emanating from landfills include the retreat of sensitive and native plant species, the abundance of halophytes or nitrophilous plants, and the prevalence of other invasive plant species, which can spread to adjacent ecosystems. To the best of the authors’ knowledge, a comprehensive synthesis of landfill plant-based biomonitoring results has not yet been reported. The advantage of biomonitoring lies in its ability to assess the quality of the environment as perceived by living organisms. This would facilitate the determination of the response of plants to departures from natural conditions, detection of trends occurring in ecosystems, and adoption of management practices to prevent or mitigate degradation of the environment. Thus, to detect such effects on the flora surrounding a landfill, this article recommends that biomonitoring is utilized in environmental regulations to complement existing monitoring techniques.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jenge.23.00003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental regulations on landfills contain detailed instructions for the monitoring of pollution from leachate on water, air, and soil. However, references to the impact of landfills on the landscape and the need to monitor the surrounding vegetation are described only in general terms. Studies have indicated that near-surface pollution events, which are not necessarily captured by existing regulatory monitoring schemes, have affected the vegetation in the vicinity of landfills. Indications for the effects of pollution emanating from landfills include the retreat of sensitive and native plant species, the abundance of halophytes or nitrophilous plants, and the prevalence of other invasive plant species, which can spread to adjacent ecosystems. To the best of the authors’ knowledge, a comprehensive synthesis of landfill plant-based biomonitoring results has not yet been reported. The advantage of biomonitoring lies in its ability to assess the quality of the environment as perceived by living organisms. This would facilitate the determination of the response of plants to departures from natural conditions, detection of trends occurring in ecosystems, and adoption of management practices to prevent or mitigate degradation of the environment. Thus, to detect such effects on the flora surrounding a landfill, this article recommends that biomonitoring is utilized in environmental regulations to complement existing monitoring techniques.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.