Close Form Solution for Dielectric Cylindrical Shell in Fractional Dimensional Space

Q4 Physics and Astronomy
Saeed Ahmed, M. Akbar, Muhammad Imran Shahzad
{"title":"Close Form Solution for Dielectric Cylindrical Shell in Fractional Dimensional Space","authors":"Saeed Ahmed, M. Akbar, Muhammad Imran Shahzad","doi":"10.53560/ppasa(59-2)757","DOIUrl":null,"url":null,"abstract":"We have studied the Laplacian equation in non-integer space which had been previously used to describe complex phenomena in physics and electromagnetism. We have applied this idea to a dielectric cylindrical shell to find the electric potential and field of a dielectric coated cylinder analytically in fractional dimensional space. The problem is derived using Gegenbauer polynomials. This close form gneral solution solved in fractional dimensional space can be applied for various materials of cylindrical shell, outside shell and inside the cylindrical core. The obtained solution is retrieved for integer order by setting the fractional parameter α=3.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(59-2)757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We have studied the Laplacian equation in non-integer space which had been previously used to describe complex phenomena in physics and electromagnetism. We have applied this idea to a dielectric cylindrical shell to find the electric potential and field of a dielectric coated cylinder analytically in fractional dimensional space. The problem is derived using Gegenbauer polynomials. This close form gneral solution solved in fractional dimensional space can be applied for various materials of cylindrical shell, outside shell and inside the cylindrical core. The obtained solution is retrieved for integer order by setting the fractional parameter α=3.
分数维空间中介电圆柱壳的闭合解
我们研究了非整数空间中的拉普拉斯方程,它以前被用来描述物理和电磁学中的复杂现象。我们将这一思想应用于介电圆柱壳,在分数维空间中解析地求出了介电涂层圆柱的电势和场。这个问题是用Gegenbauer多项式推导出来的。这种在分数维空间中解出的闭合形式通解可适用于圆柱壳、圆柱壳和圆柱芯内的各种材料。通过设置分数参数α=3,以整数顺序检索得到的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信