Note on strongly hyperbolic systems with involutive characteristics

IF 0.5 4区 数学 Q3 MATHEMATICS
G. Métivier, T. Nishitani
{"title":"Note on strongly hyperbolic systems with involutive characteristics","authors":"G. Métivier, T. Nishitani","doi":"10.1215/21562261-2017-0029","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem in L2 for first order system. A necessary condition is that the system must be uniformly diagonalizable, or equivalently that it admits a bounded symmetrizer. A sufficient condition is that it admits a smooth (Lipschtitz) symmetrizer, which is true when the system is hyperbolic, diagonalizable with eigenvalues of constant multiplicities. Counterexamples show that uniform diagonalizability is not sufficient in general for systems with variable coefficients and indicate that the symplectic properties of the set Σ of the singular points of the characteristic variety are important. In this paper, give a new class of systems for which the Cauchy problem is well posed in L2. The main assumption is that Σ is a smooth involutive manifold and the system is transversally strictly hyperbolic.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-2017-0029","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2017-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the Cauchy problem in L2 for first order system. A necessary condition is that the system must be uniformly diagonalizable, or equivalently that it admits a bounded symmetrizer. A sufficient condition is that it admits a smooth (Lipschtitz) symmetrizer, which is true when the system is hyperbolic, diagonalizable with eigenvalues of constant multiplicities. Counterexamples show that uniform diagonalizability is not sufficient in general for systems with variable coefficients and indicate that the symplectic properties of the set Σ of the singular points of the characteristic variety are important. In this paper, give a new class of systems for which the Cauchy problem is well posed in L2. The main assumption is that Σ is a smooth involutive manifold and the system is transversally strictly hyperbolic.
关于具有对合特征的强双曲系统的注意事项
考虑L2中一阶系统的柯西问题。一个必要条件是系统必须是一致对角的,或者等价地,它承认有界对称子。一个充分条件是它允许光滑的(Lipschtitz)对称子,当系统是双曲的,可对角的特征值是常数倍时,它是成立的。反例证明了变系数系统的一致对角性一般是不充分的,并指出了特征变量的奇异点集合Σ的辛性质是重要的。本文给出了一类新的系统,该类系统的柯西问题在L2上是完备的。主要假设Σ是光滑对合流形,系统是横向严格双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信