Zhiyong Yuan;Xia Shen;Yingjie Tan;Zhenhua Tan;Jinyong Lei
{"title":"Interactive Power Oscillation and Its Suppression Strategy for VSG-DSG Paralleled System in Islanded Microgrid","authors":"Zhiyong Yuan;Xia Shen;Yingjie Tan;Zhenhua Tan;Jinyong Lei","doi":"10.23919/CJEE.2022.000043","DOIUrl":null,"url":null,"abstract":"A virtual synchronous generator (VSG) can provide inertial support through renewables and energy storage. It generally operates in parallel with a diesel generator (DSG) in an islanded microgrid. However, unforeseen interactive power oscillations occur in the paralleled system when loads fluctuate. These may also burn out the VSG owing to its low overcurrent capacity. The mechanism and suppression strategy of the power oscillation of a VSG-DSG paralleled system are investigated. It reveals that the interactive power oscillation is caused essentially by the physical difference and parameter mismatch between the VSG and DSG. Then, the elimination condition of oscillation generation is derived. Subsequently, a comprehensive suppression control strategy based on virtual inductance and dynamic mutual damping technology is proposed. Finally, the experimental results verify the effectiveness of the proposed method.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"8 4","pages":"113-124"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10018147/10018152.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10018152/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
A virtual synchronous generator (VSG) can provide inertial support through renewables and energy storage. It generally operates in parallel with a diesel generator (DSG) in an islanded microgrid. However, unforeseen interactive power oscillations occur in the paralleled system when loads fluctuate. These may also burn out the VSG owing to its low overcurrent capacity. The mechanism and suppression strategy of the power oscillation of a VSG-DSG paralleled system are investigated. It reveals that the interactive power oscillation is caused essentially by the physical difference and parameter mismatch between the VSG and DSG. Then, the elimination condition of oscillation generation is derived. Subsequently, a comprehensive suppression control strategy based on virtual inductance and dynamic mutual damping technology is proposed. Finally, the experimental results verify the effectiveness of the proposed method.