D. Ouzandja, M. Messaad, A. Berrabah, Mohamed Belharizi
{"title":"Seismic analysis of Fractured Koyna Concrete Gravity Dam","authors":"D. Ouzandja, M. Messaad, A. Berrabah, Mohamed Belharizi","doi":"10.2478/heem-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract Seismic analysis of a fractured dam is a generally complex problem. This paper presents an earthquake behavior investigation of a fractured concrete gravity dam considering dam-reservoir--foundation rock interaction. The Koyna dam profile, located in India, is adopted in this study. The nonlinear finite element analyses are conducted taking into account empty and full reservoir cases, to exhibit the hydrodynamic e ect of reservoir water on the dam earthquake response. The hydrodynamic pressure is modeled by fluid finite elements based on a Lagrangian approach. Transient analyses take into account material and connection nonlinearity. Drucker-Prager model is employed in nonlinear analyses for the dam concrete and foundation rock. The structural crack between the top and bottom blocks of the dam is presented by surface-to-surface contact elements based on Coulomb’s friction law in order to simulate the behavior of contact joints and deformation of blocks. The distribution of horizontal displacements and principal stresses along the dam height is investigated for empty and full reservoir cases.The failure processes of two potential failure modes of cracked dam, i.e, the separation and sliding of top block during an earthquake, are examined.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/heem-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Seismic analysis of a fractured dam is a generally complex problem. This paper presents an earthquake behavior investigation of a fractured concrete gravity dam considering dam-reservoir--foundation rock interaction. The Koyna dam profile, located in India, is adopted in this study. The nonlinear finite element analyses are conducted taking into account empty and full reservoir cases, to exhibit the hydrodynamic e ect of reservoir water on the dam earthquake response. The hydrodynamic pressure is modeled by fluid finite elements based on a Lagrangian approach. Transient analyses take into account material and connection nonlinearity. Drucker-Prager model is employed in nonlinear analyses for the dam concrete and foundation rock. The structural crack between the top and bottom blocks of the dam is presented by surface-to-surface contact elements based on Coulomb’s friction law in order to simulate the behavior of contact joints and deformation of blocks. The distribution of horizontal displacements and principal stresses along the dam height is investigated for empty and full reservoir cases.The failure processes of two potential failure modes of cracked dam, i.e, the separation and sliding of top block during an earthquake, are examined.
期刊介绍:
Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.