Optimal control of satellite attitude and its stability based on quaternion parameters

IF 1.1 Q2 MATHEMATICS, APPLIED
M. Niknam, H. Kheiri, Nadereh Abdi Sobouhi
{"title":"Optimal control of satellite attitude and its stability based on quaternion parameters","authors":"M. Niknam, H. Kheiri, Nadereh Abdi Sobouhi","doi":"10.22034/CMDE.2021.43439.1854","DOIUrl":null,"url":null,"abstract":"‎This paper proposes an optimal control method for the chaotic ‎attitude of the satellite when it is exposed to external disturbances. When there is no control over the satellite, its chaotic attitude ‎is investigated using Lyapunov exponents (LEs)‎, Poincare diagrams, and bifurcation diagrams. ‎In order to overcome the problem of singularity in the great maneuvers of satellite, ‎we consider the kinematic equations based on quaternion parameters instead of Euler angles, ‎and obtain control functions by using the Pontryagin maximum principle (PMP)‎. ‎These functions are able to reach the satellite attitude to its equilibrium point. ‎Also the asymptotic stability of these control functions is investigated by Lyapunov's stability theorem. ‎Some simulation results are given to visualize the effectiveness and feasibility of the proposed method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.43439.1854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

‎This paper proposes an optimal control method for the chaotic ‎attitude of the satellite when it is exposed to external disturbances. When there is no control over the satellite, its chaotic attitude ‎is investigated using Lyapunov exponents (LEs)‎, Poincare diagrams, and bifurcation diagrams. ‎In order to overcome the problem of singularity in the great maneuvers of satellite, ‎we consider the kinematic equations based on quaternion parameters instead of Euler angles, ‎and obtain control functions by using the Pontryagin maximum principle (PMP)‎. ‎These functions are able to reach the satellite attitude to its equilibrium point. ‎Also the asymptotic stability of these control functions is investigated by Lyapunov's stability theorem. ‎Some simulation results are given to visualize the effectiveness and feasibility of the proposed method.
基于四元数参数的卫星姿态及其稳定性最优控制
‎本文提出了一种混沌系统的最优控制方法‎当卫星受到外部干扰时的姿态。当卫星无法控制时,其混乱的姿态‎使用李雅普诺夫指数(LE)进行研究‎, 庞加莱图和分岔图。‎为了克服卫星大机动中的奇异性问题,‎我们考虑基于四元数参数而不是欧拉角的运动学方程,‎并利用庞特里亚金最大值原理(PMP)获得控制功能‎. ‎这些函数能够使卫星姿态达到其平衡点。‎利用李雅普诺夫稳定性定理研究了这些控制函数的渐近稳定性。‎仿真结果表明了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信