Global Well-Posedness of the 4-D Energy-Critical Stochastic Nonlinear Schrödinger Equations with Non-Vanishing Boundary Condition

Pub Date : 2019-10-07 DOI:10.1619/fesi.65.287
Kelvin Cheung, Guopeng Li
{"title":"Global Well-Posedness of the 4-D Energy-Critical Stochastic Nonlinear Schrödinger Equations with Non-Vanishing Boundary Condition","authors":"Kelvin Cheung, Guopeng Li","doi":"10.1619/fesi.65.287","DOIUrl":null,"url":null,"abstract":"We consider the energy-critical stochastic cubic nonlinear Schrodinger equation on $\\mathbb R^4$ with additive noise, and with the non-vanishing boundary conditions at spatial infinity. By viewing this equation as a perturbation to the energy-critical cubic nonlinear Schrodinger equation on $\\mathbb R^4$, we prove global well-posedness in the energy space. Moreover, we establish unconditional uniqueness of solutions in the energy space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.65.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the energy-critical stochastic cubic nonlinear Schrodinger equation on $\mathbb R^4$ with additive noise, and with the non-vanishing boundary conditions at spatial infinity. By viewing this equation as a perturbation to the energy-critical cubic nonlinear Schrodinger equation on $\mathbb R^4$, we prove global well-posedness in the energy space. Moreover, we establish unconditional uniqueness of solutions in the energy space.
分享
查看原文
具有非消失边界条件的四维能量临界随机非线性Schrödinger方程的全局适定性
考虑了$\mathbb R^4$上具有加性噪声的能量临界随机三次非线性薛定谔方程,并考虑了空间无穷远处的非消失边界条件。通过将该方程看作是$\mathbb R^4$上能量临界三次非线性薛定谔方程的扰动,我们证明了该方程在能量空间中的全局适定性。此外,我们还建立了解在能量空间上的无条件唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信