Resonance in Multicomponent Linear Systems

IF 0.3 Q4 MECHANICS
A. A. Lykov, V. A. Malyshev, M. V. Melikian
{"title":"Resonance in Multicomponent Linear Systems","authors":"A. A. Lykov,&nbsp;V. A. Malyshev,&nbsp;M. V. Melikian","doi":"10.3103/S0027133021030043","DOIUrl":null,"url":null,"abstract":"<p>We consider a system of many point particles with arbitrary quadratic interaction and a harmonic force acting on a single fixed particle. Necessary and sufficient conditions for resonance and uniform boundedness of trajectories are obtained; and for the case of resonance the late time asymptotics for energy maximum of the system is obtained as well.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"76 3","pages":"88 - 93"},"PeriodicalIF":0.3000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133021030043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a system of many point particles with arbitrary quadratic interaction and a harmonic force acting on a single fixed particle. Necessary and sufficient conditions for resonance and uniform boundedness of trajectories are obtained; and for the case of resonance the late time asymptotics for energy maximum of the system is obtained as well.

多分量线性系统中的共振
我们考虑一个具有任意二次相互作用的多点粒子系统和一个作用在单个固定粒子上的调和力。得到了轨迹共振和均匀有界的充分必要条件;对于共振情况,也得到了系统能量最大值的晚时渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信