H. Alimohammadian, Fereshteh Mahdipour Haskouei, J. Sabouri
{"title":"Magnetic parameters and palaeoclimate: A case study of loess deposits of North-East of Iran","authors":"H. Alimohammadian, Fereshteh Mahdipour Haskouei, J. Sabouri","doi":"10.22201/igeof.00167169p.2021.60.4.1949","DOIUrl":null,"url":null,"abstract":"Environmental magnetism techniques enable us to reconstruct paleoclimate conditions in some deposition such as losses. The magnetic properties of minerals are used as proxies for environmental changes. For this study, loess/paleosol sequence of Kolet section at Neka, north-east of Iran were magnetically investigated. We applied environmental magnetism methods, to reconstruct paleoclimate changes. We investigated relationship between paleoclimate changes and environmental magnetism proxies like magnetic susceptibility (?) variation. The laboratory techniques indicated the presence of main factor of magnetic property in loess/paleosol sequence, such as magnetite, maghemite and etc. We also estimated magnetically parameters (like SIRM, HIRM and etc.) to confirm concentrations of both aeolian and pedogenic particles versus variations of magnetic susceptibility enhancement. The ? values show prominent peaks for the three well developed soil and paleosol horizons, Recent Soil (S0), Upper Paleosol (S1) and Lower Paleosol (S2); which refer to warmer and wetter conditions. As result, we concluded that the increase/decreasing of magnetic susceptibility is coinciding with palaeosol/loess sequence, and probably with humid/arid conditions. Moreover, variations of magnetic susceptibility versus lithological column of Kolet section enabled us to recognize paleoclimatically periods known as interglacial/glacial cycles. The obtained magnetic data indicate that during over the past 50 ka, there have been at least two glacial/interglacial periods and since last 20 ka, there was no main glaciation occurrence, in the study area.","PeriodicalId":12624,"journal":{"name":"Geofisica Internacional","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofisica Internacional","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.22201/igeof.00167169p.2021.60.4.1949","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Environmental magnetism techniques enable us to reconstruct paleoclimate conditions in some deposition such as losses. The magnetic properties of minerals are used as proxies for environmental changes. For this study, loess/paleosol sequence of Kolet section at Neka, north-east of Iran were magnetically investigated. We applied environmental magnetism methods, to reconstruct paleoclimate changes. We investigated relationship between paleoclimate changes and environmental magnetism proxies like magnetic susceptibility (?) variation. The laboratory techniques indicated the presence of main factor of magnetic property in loess/paleosol sequence, such as magnetite, maghemite and etc. We also estimated magnetically parameters (like SIRM, HIRM and etc.) to confirm concentrations of both aeolian and pedogenic particles versus variations of magnetic susceptibility enhancement. The ? values show prominent peaks for the three well developed soil and paleosol horizons, Recent Soil (S0), Upper Paleosol (S1) and Lower Paleosol (S2); which refer to warmer and wetter conditions. As result, we concluded that the increase/decreasing of magnetic susceptibility is coinciding with palaeosol/loess sequence, and probably with humid/arid conditions. Moreover, variations of magnetic susceptibility versus lithological column of Kolet section enabled us to recognize paleoclimatically periods known as interglacial/glacial cycles. The obtained magnetic data indicate that during over the past 50 ka, there have been at least two glacial/interglacial periods and since last 20 ka, there was no main glaciation occurrence, in the study area.
期刊介绍:
Geofísica internacional is a quarterly scientific journal that publishes original papers that contain topics that are interesting for the geophysical community. The journal publishes research and review articles, brief notes and reviews books about seismology, volcanology, spacial sciences, hydrology and exploration, paleomagnetism and tectonic, and physical oceanography.