Effect of AlN addition on the reaction sintering of Al2TiO5 composites fabricated by spark plasma sintering

IF 2.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
M. Kitiwan, D. Atong, F. Endo, T. Goto
{"title":"Effect of AlN addition on the reaction sintering of Al2TiO5 composites fabricated by spark plasma sintering","authors":"M. Kitiwan, D. Atong, F. Endo, T. Goto","doi":"10.1080/21870764.2023.2186008","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fully dense Al2TiO5–Al2O3–TiN (ATN) composites were fabricated by reactive sintering using spark plasma sintering at 1400°C for 5 min under 100 MPa in vacuum. An equimolar ratio of Al2O3:TiO2 was used as the starting powder, while the addition of 0–36 mol% AlN was investigated. The thermodynamic calculation indicates that the initial reaction was that of TiO2 and AlN, forming TiN and Al2O3, and then the remaining TiO2 reacted with Al2O3 to produce Al2TiO5. With the increase in AlN precursor, Al2TiO5 gradually decreased, while Al2O3 and TiN increased. The lattice parameters of Al2TiO5 were enlarged with AlN addition, implying the incorporation of N atoms in the Al2TiO5 unit cell. The addition of AlN effectively produced fully densified bodies with small grain size, and microcrack-free, which therefore enhanced the mechanical properties of ATN composites. At 36 mol% AlN addition, the composite shows Vickers hardness and fracture toughness of 16.26 ± 1.61 GPa and 5.20 ± 0.46 MPa.m1/2, respectively.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"225 - 231"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2023.2186008","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Fully dense Al2TiO5–Al2O3–TiN (ATN) composites were fabricated by reactive sintering using spark plasma sintering at 1400°C for 5 min under 100 MPa in vacuum. An equimolar ratio of Al2O3:TiO2 was used as the starting powder, while the addition of 0–36 mol% AlN was investigated. The thermodynamic calculation indicates that the initial reaction was that of TiO2 and AlN, forming TiN and Al2O3, and then the remaining TiO2 reacted with Al2O3 to produce Al2TiO5. With the increase in AlN precursor, Al2TiO5 gradually decreased, while Al2O3 and TiN increased. The lattice parameters of Al2TiO5 were enlarged with AlN addition, implying the incorporation of N atoms in the Al2TiO5 unit cell. The addition of AlN effectively produced fully densified bodies with small grain size, and microcrack-free, which therefore enhanced the mechanical properties of ATN composites. At 36 mol% AlN addition, the composite shows Vickers hardness and fracture toughness of 16.26 ± 1.61 GPa and 5.20 ± 0.46 MPa.m1/2, respectively.
AlN添加对火花等离子烧结Al2TiO5复合材料反应烧结的影响
摘要采用反应烧结法,在1400°C下用火花等离子体烧结5分钟,制备了全致密的Al2TiO5–Al2O3–TiN(ATN)复合材料 在真空中在100MPa下最小。使用等摩尔比的Al2O3:TiO2作为起始粉末,同时添加0–36 mol%AlN。热力学计算表明,初始反应是TiO2和AlN的反应,形成TiN和Al2O3,然后剩余的TiO2与Al2O3反应生成Al2TiO5。随着AlN前驱体的增加,Al2TiO5逐渐减少,而Al2O3和TiN增加。Al2TiO5的晶格参数随着AlN的加入而增大,这意味着N原子掺入了Al2TiO5。AlN的加入有效地产生了晶粒尺寸小、无微裂纹的完全致密体,从而提高了ATN复合材料的力学性能。36岁 添加mol%AlN,复合材料的维氏硬度和断裂韧性为16.26 ± 1.61 GPa和5.20 ± 0.46 MPa.m1/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Asian Ceramic Societies
Journal of Asian Ceramic Societies Materials Science-Ceramics and Composites
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
10 weeks
期刊介绍: The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信