Solution to the minimum harmonic index of graphs with given minimum degree

IF 0.6 Q3 MATHEMATICS
Meili Liang, Bo Cheng, Jianxi Liu
{"title":"Solution to the minimum harmonic index of graphs with given minimum degree","authors":"Meili Liang, Bo Cheng, Jianxi Liu","doi":"10.22108/TOC.2017.101076.1462","DOIUrl":null,"url":null,"abstract":"The harmonic index of a graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d(v) , where d(u) denotes the degree of a vertex u in G. Let G(n, k) be the set of simple n-vertex graphs with minimum degree at least k. In this work we consider the problem of determining the minimum value of the harmonic index and the corresponding extremal graphs among G(n, k). We solve the problem for each integer k(1 ≤ k ≤ n/2) and show the corresponding extremal graph is the complete split graph K∗ k,n−k. This result together with our previous result which solve the problem for each integer k(n/2 ≤ k ≤ n−1) give a complete solution of the problem.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"7 1","pages":"25-33"},"PeriodicalIF":0.6000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.101076.1462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The harmonic index of a graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d(v) , where d(u) denotes the degree of a vertex u in G. Let G(n, k) be the set of simple n-vertex graphs with minimum degree at least k. In this work we consider the problem of determining the minimum value of the harmonic index and the corresponding extremal graphs among G(n, k). We solve the problem for each integer k(1 ≤ k ≤ n/2) and show the corresponding extremal graph is the complete split graph K∗ k,n−k. This result together with our previous result which solve the problem for each integer k(n/2 ≤ k ≤ n−1) give a complete solution of the problem.
给定最小度图的最小调和指数的求解
图G的谐波指数被定义为H (G) =∑紫外线∈E (G) 2 d (u) + d (v),在d (u)表示一个顶点的度u G .让G (n, k)是一组简单的n点图以最小程度至少k。这项工作我们考虑的问题确定谐波指标的最小值和相应的极值图G (n, k)。我们解决问题对于每个整数k (k 1≤≤n / 2)并显示相应的极值图是完整的分割图k∗k, n−k。该结果与我们之前求解每整数k(n/2≤k≤n−1)的结果一起给出了问题的完全解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信