The Poisson Nadarajah-Haghighi Distribution: Different Methods of Estimation

Pub Date : 2021-08-30 DOI:10.13052/jrss0974-8024.1423
Sajid Ali, S. Dey, M. H. Tahir, M. Mansoor
{"title":"The Poisson Nadarajah-Haghighi Distribution: Different Methods of Estimation","authors":"Sajid Ali, S. Dey, M. H. Tahir, M. Mansoor","doi":"10.13052/jrss0974-8024.1423","DOIUrl":null,"url":null,"abstract":"Estimation of parameters of Poisson Nadarajah-Haghighi (PNH) distribution from the frequentist and Bayesian point of view is discussed in this article. To this end, we briefly described ten different frequentist approaches, namely, the maximum likelihood estimators, percentile based estimators, least squares estimators, weighted least squares estimators, maximum product of spacings estimators, minimum spacing absolute distance estimators, minimum spacing absolute-log distance estimators, Cramér-von Mises estimators, Anderson-Darling estimators and right-tail Anderson-Darling estimators. To assess the performance of different estimators, Monte Carlo simulations are done for small and large samples. The performance of the estimators is compared in terms of their bias, root mean squares error, average absolute difference between the true and estimated distribution functions, and the maximum absolute difference between the true and estimated distribution functions of the estimates using simulated data. For the Bayesian inference of the unknown parameters, we use Metropolis–Hastings (MH) algorithm to calculate the Bayes estimates and the corresponding credible intervals. Results from the simulation study suggests that among the considered classical methods of estimation, weighted least squares and the maximum product spacing estimators uniformly produces the least biases of the estimates with least root mean square errors. However, Bayes estimates perform better than all other estimates. Finally, we discuss a practical data set to show the application of the distribution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Estimation of parameters of Poisson Nadarajah-Haghighi (PNH) distribution from the frequentist and Bayesian point of view is discussed in this article. To this end, we briefly described ten different frequentist approaches, namely, the maximum likelihood estimators, percentile based estimators, least squares estimators, weighted least squares estimators, maximum product of spacings estimators, minimum spacing absolute distance estimators, minimum spacing absolute-log distance estimators, Cramér-von Mises estimators, Anderson-Darling estimators and right-tail Anderson-Darling estimators. To assess the performance of different estimators, Monte Carlo simulations are done for small and large samples. The performance of the estimators is compared in terms of their bias, root mean squares error, average absolute difference between the true and estimated distribution functions, and the maximum absolute difference between the true and estimated distribution functions of the estimates using simulated data. For the Bayesian inference of the unknown parameters, we use Metropolis–Hastings (MH) algorithm to calculate the Bayes estimates and the corresponding credible intervals. Results from the simulation study suggests that among the considered classical methods of estimation, weighted least squares and the maximum product spacing estimators uniformly produces the least biases of the estimates with least root mean square errors. However, Bayes estimates perform better than all other estimates. Finally, we discuss a practical data set to show the application of the distribution.
分享
查看原文
Poisson-Nadrajah-Hagheii分布:不同的估计方法
本文从频率论和贝叶斯的角度讨论了Poisson-Nadrajah-Hagheii(PNH)分布参数的估计。为此,我们简要描述了十种不同的频率论方法,即最大似然估计量、基于百分位数的估计量、最小二乘估计量、加权最小二乘估计量,空间的最大乘积估计量、最小空间绝对距离估计量、最小空间绝对对数距离估计量和Cramér-von Mises估计量,Anderson-Darling估计量和右尾Anderson-Darlin估计量。为了评估不同估计量的性能,对小样本和大样本进行了蒙特卡罗模拟。使用模拟数据,根据估计的偏差、均方根误差、真实分布函数与估计分布函数之间的平均绝对差以及真实分布函数和估计分布函数的最大绝对差来比较估计量的性能。对于未知参数的贝叶斯推断,我们使用Metropolis–Hastings(MH)算法来计算贝叶斯估计和相应的可信区间。模拟研究的结果表明,在所考虑的经典估计方法中,加权最小二乘和最大乘积间距估计一致地产生具有最小均方根误差的估计的最小偏差。然而,贝叶斯估计的性能要好于所有其他估计。最后,我们讨论了一个实际的数据集来展示分布的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信