{"title":"Leaper Tours","authors":"Nikolai Beluhov","doi":"10.19086/aic.2022.4","DOIUrl":null,"url":null,"abstract":"Let $p$ and $q$ be positive integers. The $(p, q)$-leaper $L$ is a generalised knight which leaps $p$ units away along one coordinate axis and $q$ units away along the other. Consider a free $L$, meaning that $p + q$ is odd and $p$ and $q$ are relatively prime. We prove that $L$ tours the board of size $4pq \\times n$ for all sufficiently large positive integers $n$. Combining this with the recently established conjecture of Willcocks which states that $L$ tours the square board of side $2(p + q)$, we conclude that furthermore $L$ tours all boards both of whose sides are even and sufficiently large. This, in particular, completely resolves the question of the Hamiltonicity of leaper graphs on sufficiently large square boards.","PeriodicalId":36338,"journal":{"name":"Advances in Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/aic.2022.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let $p$ and $q$ be positive integers. The $(p, q)$-leaper $L$ is a generalised knight which leaps $p$ units away along one coordinate axis and $q$ units away along the other. Consider a free $L$, meaning that $p + q$ is odd and $p$ and $q$ are relatively prime. We prove that $L$ tours the board of size $4pq \times n$ for all sufficiently large positive integers $n$. Combining this with the recently established conjecture of Willcocks which states that $L$ tours the square board of side $2(p + q)$, we conclude that furthermore $L$ tours all boards both of whose sides are even and sufficiently large. This, in particular, completely resolves the question of the Hamiltonicity of leaper graphs on sufficiently large square boards.