{"title":"DP-BASED ALGORITHM AND FPTAS FOR THE KNAPSACK SHARING AND RELATED PROBLEMS","authors":"S. Kataoka, Takeo Yamada","doi":"10.15807/JORSJ.62.1","DOIUrl":null,"url":null,"abstract":"In the knapsack sharing problem (KSP), formulated previously, we considered a game-theoretic situation in which two or more players (agents) compete for their share of capacity in a knapsack with their respective sets of items. As an extension of this problem, we formulate the extended knapsack sharing problem (XKSP). This is actually a family of KSP-like problems, and we present a dynamic programmingbased (DP-based), pseudo-polynomial time algorithm to solve XKSP to optimality in a unified way. XKSP is shown to be NP-hard, but due to the existence of this pseudo-polynomial time algorithm, it is only weakly NP-hard. Next, we develop an algorithm to solve the problem approximately in polynomial time by decomposing it into a series of subproblems. Furthermore, we introduce a scaling factor into the DP computation to obtain a fully polynomial time approximation scheme (FPTAS) for XKSP with two agents. Extension to the case of more than two agents is discussed, together with a non-DP-based PTAS.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.62.1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.62.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
In the knapsack sharing problem (KSP), formulated previously, we considered a game-theoretic situation in which two or more players (agents) compete for their share of capacity in a knapsack with their respective sets of items. As an extension of this problem, we formulate the extended knapsack sharing problem (XKSP). This is actually a family of KSP-like problems, and we present a dynamic programmingbased (DP-based), pseudo-polynomial time algorithm to solve XKSP to optimality in a unified way. XKSP is shown to be NP-hard, but due to the existence of this pseudo-polynomial time algorithm, it is only weakly NP-hard. Next, we develop an algorithm to solve the problem approximately in polynomial time by decomposing it into a series of subproblems. Furthermore, we introduce a scaling factor into the DP computation to obtain a fully polynomial time approximation scheme (FPTAS) for XKSP with two agents. Extension to the case of more than two agents is discussed, together with a non-DP-based PTAS.
期刊介绍:
The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.