{"title":"Analysis and Evaluation Research on Road Damage of Post-Earthquake Using Generalized Information Diffusion Model","authors":"F. Wang, J. Zhang, Z. Tan, X. Ma, W. Wang","doi":"10.56748/ejse.182692","DOIUrl":null,"url":null,"abstract":"Timely and effective estimation of road damage degree can provide scientific and reasonable support for emergency rescue. In this paper, we shall first briefly introduced a generalized information diffusion model to evaluate the damage degree of roads. Since the road earthquake loss system is influenced by many factors, which has some characters such as smaller and random sample size, the excessive features and nonlinear, etc. Based on it, several measured indicators of road damage were selected as key impacting indicators to estimate the failure grade, including the damage degree of road and bridge x1, damage degree of subgrade and pavement x2 and damage degree of roadside environment destruction on road x3. Moreover, the fuzzy diffusion and interpolation mapping for sparse data points has been defined by the fuzzy mapping theory. Next, the heterogeneous information diffusion from limited data point information to its adjacent area points was implemented. In this procedure, the fuzzy approximate reasoning and information centralization of road rupture width are also has been estimated. The numerical results show that the Generalized Information Diffusion (GID) model can reasonably approximate and extend effective information for incomplete data samples, which also can be applied to treat the nonlinear relationship between road damage degree of postearthquake.Finally, an example is given to illustrate the effectiveness and feasibility of the method.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.182692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Timely and effective estimation of road damage degree can provide scientific and reasonable support for emergency rescue. In this paper, we shall first briefly introduced a generalized information diffusion model to evaluate the damage degree of roads. Since the road earthquake loss system is influenced by many factors, which has some characters such as smaller and random sample size, the excessive features and nonlinear, etc. Based on it, several measured indicators of road damage were selected as key impacting indicators to estimate the failure grade, including the damage degree of road and bridge x1, damage degree of subgrade and pavement x2 and damage degree of roadside environment destruction on road x3. Moreover, the fuzzy diffusion and interpolation mapping for sparse data points has been defined by the fuzzy mapping theory. Next, the heterogeneous information diffusion from limited data point information to its adjacent area points was implemented. In this procedure, the fuzzy approximate reasoning and information centralization of road rupture width are also has been estimated. The numerical results show that the Generalized Information Diffusion (GID) model can reasonably approximate and extend effective information for incomplete data samples, which also can be applied to treat the nonlinear relationship between road damage degree of postearthquake.Finally, an example is given to illustrate the effectiveness and feasibility of the method.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.