On the Invariant Correspondence between the Symmetric Second-Rank Tensors and the Vector Systems

IF 0.3 Q4 MECHANICS
D. V. Georgievskii
{"title":"On the Invariant Correspondence between the Symmetric Second-Rank Tensors and the Vector Systems","authors":"D. V. Georgievskii","doi":"10.3103/S0027133021030031","DOIUrl":null,"url":null,"abstract":"<p>The possibilities of various representations of high-rank tensors in three-dimensional space using lower-rank tensors, in particular, the representations of second-rank tensors by vector fields, is discussed. The purpose of these representations is a convenient geometric interpretation of certain mechanical properties of objects described by high-rank tensors. An invariant correspondence between symmetric second-rank tensors in three-dimensional space and pairs of vectors from the same space is proposed. On the basis of this correspondence, a geometric interpretation of the action of an isotropic symmetric tensor function of a tensor argument is given.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"76 3","pages":"83 - 87"},"PeriodicalIF":0.3000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133021030031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The possibilities of various representations of high-rank tensors in three-dimensional space using lower-rank tensors, in particular, the representations of second-rank tensors by vector fields, is discussed. The purpose of these representations is a convenient geometric interpretation of certain mechanical properties of objects described by high-rank tensors. An invariant correspondence between symmetric second-rank tensors in three-dimensional space and pairs of vectors from the same space is proposed. On the basis of this correspondence, a geometric interpretation of the action of an isotropic symmetric tensor function of a tensor argument is given.

对称二阶张量与向量系统的不变对应关系
讨论了用低阶张量在三维空间中表示高阶张量的各种可能性,特别是用向量场表示二阶张量的可能性。这些表示的目的是方便地从几何角度解释由高阶张量描述的物体的某些力学性质。提出了三维空间中对称二阶张量与同一空间中的向量对之间的不变对应关系。在这种对应关系的基础上,给出了各向同性对称张量函数对张量参数作用的几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信