{"title":"σ-sporadic prime ideals and superficial elements","authors":"D. Kamano, K. A. Essan, A. Abdoulaye, E. D. Akeke","doi":"10.22124/JART.2017.2714","DOIUrl":null,"url":null,"abstract":"Let $A$ be a Noetherian ring, $I$ be an ideal of $A$ and $sigma$ be a semi-prime operation, different from the identity map on the set of all ideals of $A$. Results of Essan proved that the sets of associated prime ideals of $sigma(I^n)$, which denoted by $Ass(A/sigma(I^n))$, stabilize to $A_{sigma}(I)$. We give some properties of the sets $S^{sigma}_{n}(I)=Ass(A/sigma(I^n))setminus A_{sigma}(I)$, with $n$ small, which are the sets of $sigma$-sporadic prime divisors of $I$.We also give some relationships between $sigma(f_I)$-superficial elements and asymptotic prime $sigma$-divisors, where $sigma (f_I)$ is the $sigma$-closure of the $I$-adic filtration $f_I=(I^n)_{ninmathbb{N}}$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"5 1","pages":"35-45"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2017.2714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let $A$ be a Noetherian ring, $I$ be an ideal of $A$ and $sigma$ be a semi-prime operation, different from the identity map on the set of all ideals of $A$. Results of Essan proved that the sets of associated prime ideals of $sigma(I^n)$, which denoted by $Ass(A/sigma(I^n))$, stabilize to $A_{sigma}(I)$. We give some properties of the sets $S^{sigma}_{n}(I)=Ass(A/sigma(I^n))setminus A_{sigma}(I)$, with $n$ small, which are the sets of $sigma$-sporadic prime divisors of $I$.We also give some relationships between $sigma(f_I)$-superficial elements and asymptotic prime $sigma$-divisors, where $sigma (f_I)$ is the $sigma$-closure of the $I$-adic filtration $f_I=(I^n)_{ninmathbb{N}}$.