CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sattar Aljabair, Israa Alesbe, A. Alkhalaf
{"title":"CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room","authors":"Sattar Aljabair, Israa Alesbe, A. Alkhalaf","doi":"10.18186/thermal.1243491","DOIUrl":null,"url":null,"abstract":"The virus diffusion in a ventilated room with the droplets produced by coughing and breathing are presented by the Lagrangian model. When the human body is located in the middle of the room with two locations of AC, in front of and behind the human body, three angles of Air Conditioning (AC) gate are applied 0°, 30°, and 60° to show droplet particle diffusion in the room in these cases. Three types of coughing velocity profiles were selected, real human coughing, sinusoidal cough, and cough jet with one velocity profile of breathing as a step function to cover the inhaling and exhaling cycle. The simulation results show that the uncovered standing in the middle of the room, are more susceptible to infection for the bouncy and forced flow around the human body. Droplet particle moves in the room as a random diffusion and it is very sensitive to the thermal load inside the room, generally depends on the bouncy force and pressure force due to convection heat transfer. when the AC location at the opposite direction of coughing flow, the droplet travels a distance of about 3 m, 2.85 m, and 2.75 m for real cough, sinusoidal cough, and cough jet respectively. While the droplet travel distance is about 3.1 m, 3.2 m, and 2.9 m when the AC location is at the same direction of coughing flow. Finally, the adopted CFD modeling was also used to show the effects of different AC locations on coughing, breathing particle droplets distribution in different indoor spaces, such as buildings, hospitals, and public transports, Also, showed good visual demonstration and representation of the real physical processes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1243491","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The virus diffusion in a ventilated room with the droplets produced by coughing and breathing are presented by the Lagrangian model. When the human body is located in the middle of the room with two locations of AC, in front of and behind the human body, three angles of Air Conditioning (AC) gate are applied 0°, 30°, and 60° to show droplet particle diffusion in the room in these cases. Three types of coughing velocity profiles were selected, real human coughing, sinusoidal cough, and cough jet with one velocity profile of breathing as a step function to cover the inhaling and exhaling cycle. The simulation results show that the uncovered standing in the middle of the room, are more susceptible to infection for the bouncy and forced flow around the human body. Droplet particle moves in the room as a random diffusion and it is very sensitive to the thermal load inside the room, generally depends on the bouncy force and pressure force due to convection heat transfer. when the AC location at the opposite direction of coughing flow, the droplet travels a distance of about 3 m, 2.85 m, and 2.75 m for real cough, sinusoidal cough, and cough jet respectively. While the droplet travel distance is about 3.1 m, 3.2 m, and 2.9 m when the AC location is at the same direction of coughing flow. Finally, the adopted CFD modeling was also used to show the effects of different AC locations on coughing, breathing particle droplets distribution in different indoor spaces, such as buildings, hospitals, and public transports, Also, showed good visual demonstration and representation of the real physical processes.
在通风室内咳嗽和呼吸时流感病毒扩散的CFD模拟
拉格朗日模型描述了病毒在通风室内通过咳嗽和呼吸产生的飞沫进行扩散的过程。当人体位于房间中间,有两个空调位置时,分别在人体前面和后面,分别施加0°、30°和60°三个角度的空调门,以显示在这些情况下液滴颗粒在房间内的扩散情况。选择了三种类型的咳嗽速度曲线,即真实的人咳嗽、正弦咳嗽和以一个呼吸速度曲线作为阶跃函数覆盖吸气和呼气循环的咳嗽喷射。仿真结果表明,站在房间中间的无遮盖者,由于人体周围的弹性和强制流动,更容易受到感染。液滴颗粒在室内的运动是一种随机扩散,它对室内的热负荷非常敏感,一般依赖于对流传热产生的弹性力和压力力。当交流位置与咳嗽流方向相反时,真实咳嗽、正弦咳嗽和咳嗽射流的液滴距离分别约为3 m、2.85 m和2.75 m。当交流位置与咳嗽流方向相同时,液滴的传播距离分别为3.1 m、3.2 m和2.9 m。最后,采用CFD模型模拟了不同空调位置对不同室内空间(如建筑物、医院、公共交通等)咳嗽、呼吸颗粒液滴分布的影响,对真实物理过程进行了较好的可视化演示和再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信