Influence of Magnetic Wood on Mechanical and Electromagnetic Wave-Absorbing Properties of Polymer Composites

IF 3.4 4区 化学 Q2 POLYMER SCIENCE
Satish Geeri, B. Murthy, Aditya Kolakoti, M. Murugan, P. Elumalai, N. R. Dhineshbabu, S. Prabhakar
{"title":"Influence of Magnetic Wood on Mechanical and Electromagnetic Wave-Absorbing Properties of Polymer Composites","authors":"Satish Geeri, B. Murthy, Aditya Kolakoti, M. Murugan, P. Elumalai, N. R. Dhineshbabu, S. Prabhakar","doi":"10.1155/2023/1142654","DOIUrl":null,"url":null,"abstract":"The application of wireless electronic devices is increasing nowadays; hence, there is a necessity for electromagnetic wave-absorbing material, which is mechanically stable. Polymer composites with magnetic wood as filler material were fabricated by hand lay-up methods of 6 mm thickness. For the proposed immersion duration, magnetic wood was developed by in situ chemical co-precipitation methods. The microwave absorbing phenomenon is evaluated based on the complex permeability, complex permittivity, dielectric tangent, and magnetic tangent losses. The experimentation was done by vector network analyzer in the frequency range of 8.2–12.4 GHz by X-band and Through-reflect-line (TRL) calibration. It was observed that the reflection losses increase as the immersion time increases from −8.70 dB to −9.30 dB at the frequency range of 10.2 GHz. A similar trend is also followed for the mechanical properties like tensile strength, bending strength, and impact strength with respect to the immersion time. The results revealed that the best mechanical and electromagnetic absorption properties are obtained for the specimens with immersion time of 72 hours. Validation is done for the electromagnetic wave-absorbing properties and mechanical properties by regression analysis, and the experimental data are in close agreement with the regression data.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/1142654","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

The application of wireless electronic devices is increasing nowadays; hence, there is a necessity for electromagnetic wave-absorbing material, which is mechanically stable. Polymer composites with magnetic wood as filler material were fabricated by hand lay-up methods of 6 mm thickness. For the proposed immersion duration, magnetic wood was developed by in situ chemical co-precipitation methods. The microwave absorbing phenomenon is evaluated based on the complex permeability, complex permittivity, dielectric tangent, and magnetic tangent losses. The experimentation was done by vector network analyzer in the frequency range of 8.2–12.4 GHz by X-band and Through-reflect-line (TRL) calibration. It was observed that the reflection losses increase as the immersion time increases from −8.70 dB to −9.30 dB at the frequency range of 10.2 GHz. A similar trend is also followed for the mechanical properties like tensile strength, bending strength, and impact strength with respect to the immersion time. The results revealed that the best mechanical and electromagnetic absorption properties are obtained for the specimens with immersion time of 72 hours. Validation is done for the electromagnetic wave-absorbing properties and mechanical properties by regression analysis, and the experimental data are in close agreement with the regression data.
磁性木材对高分子复合材料力学性能和电磁波吸收性能的影响
无线电子设备的应用日益广泛;因此,需要机械稳定的电磁波吸收材料。以磁性木材为填充材料,采用6 毫米 厚在建议的浸泡时间内,通过原位化学共沉淀方法开发了磁性木材。基于复磁导率、复介电常数、介质正切和磁正切损耗来评估微波吸收现象。实验由矢量网络分析仪在8.2–12.4的频率范围内完成 GHz的X波段和通过反射线(TRL)校准。据观察,反射损耗随着浸入时间从−8.70增加而增加 dB至−9.30 10.2频率范围内的dB GHz。拉伸强度、弯曲强度和冲击强度等机械性能相对于浸渍时间也遵循类似的趋势。结果表明,浸泡时间为72小时的试样具有最佳的机械和电磁吸收性能。通过回归分析对电磁波吸收性能和力学性能进行了验证,实验数据与回归数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信