Site-Directed Mutagenesis of Bile Salt Hydrolase (BSH) from Lactobacillus plantarum B14 Confirms the Importance of the V58 and Y65 Amino Acids for Activity and Substrate Specificity
IF 1.8 4区 农林科学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Site-Directed Mutagenesis of Bile Salt Hydrolase (BSH) from Lactobacillus plantarum B14 Confirms the Importance of the V58 and Y65 Amino Acids for Activity and Substrate Specificity","authors":"M. Öztürk, Zekiye Kılıçsaymaz, Cansu Önal","doi":"10.1080/08905436.2022.2164299","DOIUrl":null,"url":null,"abstract":"ABSTRACT The bile acids (BAs) de-conjugation is catalyzed by bile salt hydrolase (BSH) enzyme, that is an intestinal bacterial product and a member of the cholylglycine hydrolase (CGH) family. De-conjugated BAs alter BA-mediated signaling pathways such as glucose metabolism, energy homeostasis and lipid absorption and this makes the BSH clinically important. However, BSHs from different sources have a variable substrate preference to eight different bile salts. Although BSH is a well-studied enzyme, its molecular investigations based on BSH substrate recognition are not very well known. In this study, the relationship between substrate specificity of BSH from Lactobacillus plantarum B14 (LpBSH) and its loop II, the aliphatic-hydrophobic V58 and aromatic-hydrophobic Y65 residues in this loop was mutated and analyzed. While PCR-based site-directed mutagenesis was used to substitute V58 and Y65 amino acids for N58, F58, M58, C65, F65 and L65 amino acids, respectively, the BLR (DE3) strain of E. coli was used to express mutant recombinant LpBSHs (mrLpBSHs). Site-directed mutagenesis of LpBSH showed reduced activity of mrLpBSHs against six different BAs. Our results indicated that the V58 and mostly Y65 residues in loop II might be critical for the structural site that is involved in substrate specificity and catalysis. These findings suggested that V58 and Y65 residues of LpBSH might participate in substrate specificity and BSH substrate specificity may be dependent upon the collate group, rather than amino acid moieties. However, more mutagenesis-based investigation on other CGH family members are needed in order to understand the structure and substrate specificity relations of BSHs.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"37 1","pages":"74 - 88"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2022.2164299","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The bile acids (BAs) de-conjugation is catalyzed by bile salt hydrolase (BSH) enzyme, that is an intestinal bacterial product and a member of the cholylglycine hydrolase (CGH) family. De-conjugated BAs alter BA-mediated signaling pathways such as glucose metabolism, energy homeostasis and lipid absorption and this makes the BSH clinically important. However, BSHs from different sources have a variable substrate preference to eight different bile salts. Although BSH is a well-studied enzyme, its molecular investigations based on BSH substrate recognition are not very well known. In this study, the relationship between substrate specificity of BSH from Lactobacillus plantarum B14 (LpBSH) and its loop II, the aliphatic-hydrophobic V58 and aromatic-hydrophobic Y65 residues in this loop was mutated and analyzed. While PCR-based site-directed mutagenesis was used to substitute V58 and Y65 amino acids for N58, F58, M58, C65, F65 and L65 amino acids, respectively, the BLR (DE3) strain of E. coli was used to express mutant recombinant LpBSHs (mrLpBSHs). Site-directed mutagenesis of LpBSH showed reduced activity of mrLpBSHs against six different BAs. Our results indicated that the V58 and mostly Y65 residues in loop II might be critical for the structural site that is involved in substrate specificity and catalysis. These findings suggested that V58 and Y65 residues of LpBSH might participate in substrate specificity and BSH substrate specificity may be dependent upon the collate group, rather than amino acid moieties. However, more mutagenesis-based investigation on other CGH family members are needed in order to understand the structure and substrate specificity relations of BSHs.
期刊介绍:
Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production.
Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published.
Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.