{"title":"An Ultra-Wideband Image-Reject Up-Conversion Mixer With a Sandwich-Coupled Transformer for 5G mm-Wave Communication","authors":"Kejie Hu, Kaixue Ma, Zonglin Ma","doi":"10.1109/LMWC.2022.3163788","DOIUrl":null,"url":null,"abstract":"This letter presents an ultra-wideband 20–42 GHz image-reject up-conversion mixer with low dc-power consumption implemented in 55 nm CMOS technology for multiband mm-Wave 5G systems. A sandwich-coupled transformer (SCT) is adopted to expand the operation bandwidth. The proposed SCT demonstrates good performance in enhancing the coupling coefficient and quality factor, which enables wideband impedance matching. Moreover, a quadrature signal generator composed of a transformer and a polyphase filter (PPF) is utilized to generate wideband high-precision I/Q signals without any calibration. With only 24 mW dc-power consumption, the mixer exhibits excellent conversion gain flatness of 1.2±1.5 dB from 20 to 42 GHz. The measured image reject ratio (IRR) is better than −30 dBc within the entire operation band. The measured output 1-dB compression point (OP1 dB) is −2.57 dBm at 28 GHz and −3.96 dBm at 38 GHz. The proposed mixer exhibits good broadband characteristics, which can sustain multiband operation.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1099-1102"},"PeriodicalIF":2.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3163788","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
This letter presents an ultra-wideband 20–42 GHz image-reject up-conversion mixer with low dc-power consumption implemented in 55 nm CMOS technology for multiband mm-Wave 5G systems. A sandwich-coupled transformer (SCT) is adopted to expand the operation bandwidth. The proposed SCT demonstrates good performance in enhancing the coupling coefficient and quality factor, which enables wideband impedance matching. Moreover, a quadrature signal generator composed of a transformer and a polyphase filter (PPF) is utilized to generate wideband high-precision I/Q signals without any calibration. With only 24 mW dc-power consumption, the mixer exhibits excellent conversion gain flatness of 1.2±1.5 dB from 20 to 42 GHz. The measured image reject ratio (IRR) is better than −30 dBc within the entire operation band. The measured output 1-dB compression point (OP1 dB) is −2.57 dBm at 28 GHz and −3.96 dBm at 38 GHz. The proposed mixer exhibits good broadband characteristics, which can sustain multiband operation.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.