{"title":"Influence of pattern anisotropy on the structural behaviour of free-edge single-layer gridshells","authors":"F. Venuti","doi":"10.1515/cls-2021-0011","DOIUrl":null,"url":null,"abstract":"Abstract Free-edge gridshells represent the majority of built gridshells. Indeed, the gridshell reference geometry usually needs to be trimmed in order to provide building access or to insert the gridshell within an existing building, giving rise to one or more elastic boundaries. Despite the current design practice, so far a very limited number of scientific studies has been devoted to investigate the influence of elastic boundaries on the overall structural behaviour of gridshells. This paper focuses on the effects of the orientation of the boundary structure with respect to the grid direction. This is done by studying the buckling behaviour of an ideal single-layer steel gridshell, for different grid layout (quadrangular, hybrid, triangular) and orientation. The results of the parametric study demonstrate that the sensitivity of free-edge single-layer gridshells to the free-edge orientation strongly depends on the grid pattern. In particular, isotropic gridshells have shown an almost negligible influence of the free-edge orientation in terms of buckling load, in opposition to orthotropic gridshells. Moreover, the change in free-edge orientation induces significant variations of the global structural stiffness for all the layouts, resulting in possibly unacceptable displacements in service conditions.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"119 - 129"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cls-2021-0011","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Free-edge gridshells represent the majority of built gridshells. Indeed, the gridshell reference geometry usually needs to be trimmed in order to provide building access or to insert the gridshell within an existing building, giving rise to one or more elastic boundaries. Despite the current design practice, so far a very limited number of scientific studies has been devoted to investigate the influence of elastic boundaries on the overall structural behaviour of gridshells. This paper focuses on the effects of the orientation of the boundary structure with respect to the grid direction. This is done by studying the buckling behaviour of an ideal single-layer steel gridshell, for different grid layout (quadrangular, hybrid, triangular) and orientation. The results of the parametric study demonstrate that the sensitivity of free-edge single-layer gridshells to the free-edge orientation strongly depends on the grid pattern. In particular, isotropic gridshells have shown an almost negligible influence of the free-edge orientation in terms of buckling load, in opposition to orthotropic gridshells. Moreover, the change in free-edge orientation induces significant variations of the global structural stiffness for all the layouts, resulting in possibly unacceptable displacements in service conditions.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.