{"title":"Comparative transcriptome analysis of virulence genes of enterohemorrhagic Escherichia coli O157:H7 to acid stress","authors":"Xiao-Wan Zhang, Donggen Zhou, Hong Bai, Qijun Liu, Xinglong Xiao, Yigang Yu","doi":"10.1080/08905436.2021.1908345","DOIUrl":null,"url":null,"abstract":"ABSTRACT Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 mounts specific acid-resistance systems against acid stress, making it more difficult to eradicate in food industry. To date, RNAseq-based analysis focusing on the virulence factors within an acidic environment is restricted to asmall part of virulence gene clusters. In this study E.coli O157:H7 survived HCl stress at pH 3.0 for up to 1 h preceded by acid adaptation at pH 5.5 for 1 h. At the same time, bacteria without stimulus were cultured in neutral TSB broth for 2 h.Then, transcriptome analysis was performed to compare virulence-related genes at neutral and acidic pH. Though transcripts indicated adownshift of the flagellar, fimbriae and LEE-associated genes, the increased expression of adhesin-related genes, iron uptake genes and some potential virulence factors were identified. Comparison of the gene expression with respect to virulence factors revealed strongest cell response to the relevant stress and increased protective response for survival in the acidic pH. This suggests that E.coli O157:H7 might be still virulent following HCl stress.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"35 1","pages":"91 - 110"},"PeriodicalIF":1.8000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08905436.2021.1908345","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2021.1908345","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 mounts specific acid-resistance systems against acid stress, making it more difficult to eradicate in food industry. To date, RNAseq-based analysis focusing on the virulence factors within an acidic environment is restricted to asmall part of virulence gene clusters. In this study E.coli O157:H7 survived HCl stress at pH 3.0 for up to 1 h preceded by acid adaptation at pH 5.5 for 1 h. At the same time, bacteria without stimulus were cultured in neutral TSB broth for 2 h.Then, transcriptome analysis was performed to compare virulence-related genes at neutral and acidic pH. Though transcripts indicated adownshift of the flagellar, fimbriae and LEE-associated genes, the increased expression of adhesin-related genes, iron uptake genes and some potential virulence factors were identified. Comparison of the gene expression with respect to virulence factors revealed strongest cell response to the relevant stress and increased protective response for survival in the acidic pH. This suggests that E.coli O157:H7 might be still virulent following HCl stress.
期刊介绍:
Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production.
Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published.
Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.