Stratification of singular hyperkähler quotients

IF 0.5 Q3 MATHEMATICS
Maxence Mayrand
{"title":"Stratification of singular hyperkähler quotients","authors":"Maxence Mayrand","doi":"10.1515/coma-2021-0140","DOIUrl":null,"url":null,"abstract":"Abstract Hyperkähler quotients by non-free actions are typically singular, but are nevertheless partitioned into smooth hyperkähler manifolds. We show that these partitions are topological stratifications, in a strong sense. We also endow the quotients with global Poisson structures which recover the hyperkähler structures on the strata. Finally, we give a local model which shows that these quotients are locally isomorphic to linear complex-symplectic reductions in the GIT sense. These results can be thought of as the hyperkähler analogues of Sjamaar–Lerman’s theorems for singular symplectic reduction. They are based on a local normal form for the underlying complex-Hamiltonian manifold, which may be of independent interest.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"261 - 284"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Hyperkähler quotients by non-free actions are typically singular, but are nevertheless partitioned into smooth hyperkähler manifolds. We show that these partitions are topological stratifications, in a strong sense. We also endow the quotients with global Poisson structures which recover the hyperkähler structures on the strata. Finally, we give a local model which shows that these quotients are locally isomorphic to linear complex-symplectic reductions in the GIT sense. These results can be thought of as the hyperkähler analogues of Sjamaar–Lerman’s theorems for singular symplectic reduction. They are based on a local normal form for the underlying complex-Hamiltonian manifold, which may be of independent interest.
奇异hyperkähler商的分层
抽象的Hyperkähler商的非自由作用通常是奇异的,但仍然划分为光滑的hyperkähler流形。我们表明,这些分区是拓扑分层,在强烈的意义上。我们还赋予商数全局泊松结构,以恢复地层上的hyperkähler结构。最后,我们给出了一个局部模型,证明了这些商在GIT意义上局部同构于线性复辛约。这些结果可以被认为是hyperkähler类似Sjamaar-Lerman的奇异辛约化定理。它们基于底层复哈密顿流形的局部范式,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信