{"title":"ψ−COUPLED FIXED POINT THEOREM VIA SIMULATION FUNCTIONS IN COMPLETE PARTIALLY ORDERED METRIC SPACE AND ITS APPLICATIONS","authors":"Anupam Das, B. Hazarika, H. Nashine, J. Kim","doi":"10.22771/NFAA.2021.26.02.03","DOIUrl":null,"url":null,"abstract":"We proposed to give some new ψ − coupled fixed point theorems using simulation function coupled with other control functions in a complete partially ordered metric space which includes many related results. Further we prove the existence of solution of a fractional integral equation by using this fixed point theorem and explain it with the help of an example.","PeriodicalId":37534,"journal":{"name":"Nonlinear Functional Analysis and Applications","volume":"26 1","pages":"273-288"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Functional Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22771/NFAA.2021.26.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We proposed to give some new ψ − coupled fixed point theorems using simulation function coupled with other control functions in a complete partially ordered metric space which includes many related results. Further we prove the existence of solution of a fractional integral equation by using this fixed point theorem and explain it with the help of an example.
期刊介绍:
The international mathematical journal NFAA will publish carefully selected original research papers on nonlinear functional analysis and applications, that is, ordinary differential equations, all kinds of partial differential equations, functional differential equations, integrodifferential equations, control theory, approximation theory, optimal control, optimization theory, numerical analysis, variational inequality, asymptotic behavior, fixed point theory, dynamic systems and complementarity problems. Papers for publication will be communicated and recommended by the members of the Editorial Board.