A Critical Review on Nanoparticle Filled Adhesives for Structural Applications

Q4 Energy
Hanumantharaya R, Prem Kumar B.G., Ajit B.S.
{"title":"A Critical Review on Nanoparticle Filled Adhesives for Structural Applications","authors":"Hanumantharaya R, Prem Kumar B.G., Ajit B.S.","doi":"10.18311/jmmf/2022/31056","DOIUrl":null,"url":null,"abstract":"The objective of this review paper is to highlight some of the noteworthy research that has been done on the use of nanoparticles (NPs) to improve the performance of adhesively bonded joints (ABJs) against delamination initiation and propagation. Various nanoparticle applications, such as carbon-based, ceramic-based, and mineral-based nanoparticles, are covered. Interlaminar shear strength, fracture toughness, and fracture energy are the major parameters that have been considered for enhancing FRP delamination and fatigue resistance.The reported results indicatethat the inclusion of NPs in polymeric matrices leads to improvement of various material properties,even though some discrepancies in the results have been noted. Notwithstanding, additional researchis required to address some of the issues that have not yet been tackled.","PeriodicalId":39575,"journal":{"name":"Journal of Mines, Metals and Fuels","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mines, Metals and Fuels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jmmf/2022/31056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this review paper is to highlight some of the noteworthy research that has been done on the use of nanoparticles (NPs) to improve the performance of adhesively bonded joints (ABJs) against delamination initiation and propagation. Various nanoparticle applications, such as carbon-based, ceramic-based, and mineral-based nanoparticles, are covered. Interlaminar shear strength, fracture toughness, and fracture energy are the major parameters that have been considered for enhancing FRP delamination and fatigue resistance.The reported results indicatethat the inclusion of NPs in polymeric matrices leads to improvement of various material properties,even though some discrepancies in the results have been noted. Notwithstanding, additional researchis required to address some of the issues that have not yet been tackled.
纳米颗粒填充结构胶粘剂的研究进展
本文综述了近年来在利用纳米颗粒(NPs)提高粘接接头(ABJs)抗脱层产生和扩展性能方面的一些重要研究进展。涵盖了各种纳米粒子的应用,如碳基、陶瓷基和矿物基纳米粒子。层间剪切强度、断裂韧性和断裂能是提高FRP分层和抗疲劳性能的主要参数。报道的结果表明,聚合物基质中包含NPs导致各种材料性能的改善,尽管结果中存在一些差异。尽管如此,还需要进一步的研究来解决一些尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mines, Metals and Fuels
Journal of Mines, Metals and Fuels Energy-Fuel Technology
CiteScore
0.20
自引率
0.00%
发文量
101
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信