{"title":"Increasing the Power Output of a PV Solar System by Using a Cooling-Reflector Assembly","authors":"N. K. Kasim, Hazim Hussain, Alaa N Abed","doi":"10.46604/peti.2022.9976","DOIUrl":null,"url":null,"abstract":"There are various methods that can be employed to increase the lifespan and power output of photovoltaic (PV) systems. This study aims to increase the power output of a grid-connected PV system by using a water-cooling unit and solar reflectors. The PV modules of the current PV system are divided into two clusters. The first cluster, which is considered an improved cluster, has a solar reflector-cooling unit added to it, while the second cluster is used as a reference. The results show that the maximum efficiency and performance ratio values of the improved and reference PV modules at 10:30 AM are 14.7% & 13.7% and 97.5% & 91.2%, respectively. The maximum electrical power values of the improved and reference PV modules at 12:00 PM are 2.55 W and 1.69 W, respectively. The maximum gain value for electrical power is 43%.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2022.9976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
There are various methods that can be employed to increase the lifespan and power output of photovoltaic (PV) systems. This study aims to increase the power output of a grid-connected PV system by using a water-cooling unit and solar reflectors. The PV modules of the current PV system are divided into two clusters. The first cluster, which is considered an improved cluster, has a solar reflector-cooling unit added to it, while the second cluster is used as a reference. The results show that the maximum efficiency and performance ratio values of the improved and reference PV modules at 10:30 AM are 14.7% & 13.7% and 97.5% & 91.2%, respectively. The maximum electrical power values of the improved and reference PV modules at 12:00 PM are 2.55 W and 1.69 W, respectively. The maximum gain value for electrical power is 43%.