{"title":"Normalized solutions for the p-Laplacian equation with a trapping potential","authors":"Chao Wang, Juntao Sun","doi":"10.1515/anona-2022-0291","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {\\int }_{{{\\mathbb{R}}}^{N}}| u{| }^{r}{\\rm{d}}x=c for given c > 0 . c\\gt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0291","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {\int }_{{{\mathbb{R}}}^{N}}| u{| }^{r}{\rm{d}}x=c for given c > 0 . c\gt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.