Normalized solutions for the p-Laplacian equation with a trapping potential

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chao Wang, Juntao Sun
{"title":"Normalized solutions for the p-Laplacian equation with a trapping potential","authors":"Chao Wang, Juntao Sun","doi":"10.1515/anona-2022-0291","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {\\int }_{{{\\mathbb{R}}}^{N}}| u{| }^{r}{\\rm{d}}x=c for given c > 0 . c\\gt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0291","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {\int }_{{{\mathbb{R}}}^{N}}| u{| }^{r}{\rm{d}}x=c for given c > 0 . c\gt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.
具有俘获势的p-Laplacian方程的归一化解
摘要在本文中,我们讨论了具有俘获势和Lr{L}^{r}-超临界生长的p-拉普拉斯方程的归一化解,其中r=p r=p或2。2.这些解对应于Lr{L}^{r}-范数约束下的潜在能量泛函主体的临界点,即,对于给定的c>0,当给定c>0时,ξr NÜuÜr d x=c。c\gt 0。当r=p,r=p时,我们证明了对于c c足够小,这样的问题具有正能量的基态。当r=2,r=2时,我们证明了这类问题至少有两个解都是正能量的,一个是基态,另一个是高能解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信