{"title":"Computational investigation of erosion wear in the eco-friendly disposal of the fly ash through 90° horizontal bend of different radius ratios","authors":"Yatish Kumar Baghel, V. Patel","doi":"10.1515/cppm-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, slurry erosion wear was evaluated in 90° horizontal pipe bends of various radius ratios (R/r = 2–10) through a commercial CFD code ANSYS FLUENT. For the suspension of fly ash-water, Euler–Lagrange and two way-coupling methods were employed to predict the slurry erosion wear. The flow through the horizontal bend pipe was simulated using a Standard k–ε turbulence modelling. The computational results were validated with the experimental result of the available literature. Fly ash was taken as the dispersed phase of the solid-liquid combination however water was used as the liquid phase. The fly ash particles size was taken as 150 µm. Various affecting factors, such as velocity (4–10 m/s) and solid concentration (2.5 and 7.5% by volume) of the fly ash, were also studied in this investigation. The erosion rate was maximum in the case of R/r = 4 and minimum for R/r = 10 at all velocities and concentrations. It was also found that the erosion rate increases with the increase in solid concentration and velocity.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"411 - 422"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the present study, slurry erosion wear was evaluated in 90° horizontal pipe bends of various radius ratios (R/r = 2–10) through a commercial CFD code ANSYS FLUENT. For the suspension of fly ash-water, Euler–Lagrange and two way-coupling methods were employed to predict the slurry erosion wear. The flow through the horizontal bend pipe was simulated using a Standard k–ε turbulence modelling. The computational results were validated with the experimental result of the available literature. Fly ash was taken as the dispersed phase of the solid-liquid combination however water was used as the liquid phase. The fly ash particles size was taken as 150 µm. Various affecting factors, such as velocity (4–10 m/s) and solid concentration (2.5 and 7.5% by volume) of the fly ash, were also studied in this investigation. The erosion rate was maximum in the case of R/r = 4 and minimum for R/r = 10 at all velocities and concentrations. It was also found that the erosion rate increases with the increase in solid concentration and velocity.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.