M. Bolla, Dongze Ye, Haoyu Wang, Renyuan Ma, Valentin Frappier, William Thompson, Catherine Donner, Máté Baranyi, Fatma Abdelkhalek
{"title":"Causal Vector Autoregression Enhanced with Covariance and Order Selection","authors":"M. Bolla, Dongze Ye, Haoyu Wang, Renyuan Ma, Valentin Frappier, William Thompson, Catherine Donner, Máté Baranyi, Fatma Abdelkhalek","doi":"10.3390/econometrics11010007","DOIUrl":null,"url":null,"abstract":"A causal vector autoregressive (CVAR) model is introduced for weakly stationary multivariate processes, combining a recursive directed graphical model for the contemporaneous components and a vector autoregressive model longitudinally. Block Cholesky decomposition with varying block sizes is used to solve the model equations and estimate the path coefficients along a directed acyclic graph (DAG). If the DAG is decomposable, i.e., the zeros form a reducible zero pattern (RZP) in its adjacency matrix, then covariance selection is applied that assigns zeros to the corresponding path coefficients. Real-life applications are also considered, where for the optimal order p≥1 of the fitted CVAR(p) model, order selection is performed with various information criteria.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A causal vector autoregressive (CVAR) model is introduced for weakly stationary multivariate processes, combining a recursive directed graphical model for the contemporaneous components and a vector autoregressive model longitudinally. Block Cholesky decomposition with varying block sizes is used to solve the model equations and estimate the path coefficients along a directed acyclic graph (DAG). If the DAG is decomposable, i.e., the zeros form a reducible zero pattern (RZP) in its adjacency matrix, then covariance selection is applied that assigns zeros to the corresponding path coefficients. Real-life applications are also considered, where for the optimal order p≥1 of the fitted CVAR(p) model, order selection is performed with various information criteria.