Causal Vector Autoregression Enhanced with Covariance and Order Selection

IF 1.1 Q3 ECONOMICS
M. Bolla, Dongze Ye, Haoyu Wang, Renyuan Ma, Valentin Frappier, William Thompson, Catherine Donner, Máté Baranyi, Fatma Abdelkhalek
{"title":"Causal Vector Autoregression Enhanced with Covariance and Order Selection","authors":"M. Bolla, Dongze Ye, Haoyu Wang, Renyuan Ma, Valentin Frappier, William Thompson, Catherine Donner, Máté Baranyi, Fatma Abdelkhalek","doi":"10.3390/econometrics11010007","DOIUrl":null,"url":null,"abstract":"A causal vector autoregressive (CVAR) model is introduced for weakly stationary multivariate processes, combining a recursive directed graphical model for the contemporaneous components and a vector autoregressive model longitudinally. Block Cholesky decomposition with varying block sizes is used to solve the model equations and estimate the path coefficients along a directed acyclic graph (DAG). If the DAG is decomposable, i.e., the zeros form a reducible zero pattern (RZP) in its adjacency matrix, then covariance selection is applied that assigns zeros to the corresponding path coefficients. Real-life applications are also considered, where for the optimal order p≥1 of the fitted CVAR(p) model, order selection is performed with various information criteria.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A causal vector autoregressive (CVAR) model is introduced for weakly stationary multivariate processes, combining a recursive directed graphical model for the contemporaneous components and a vector autoregressive model longitudinally. Block Cholesky decomposition with varying block sizes is used to solve the model equations and estimate the path coefficients along a directed acyclic graph (DAG). If the DAG is decomposable, i.e., the zeros form a reducible zero pattern (RZP) in its adjacency matrix, then covariance selection is applied that assigns zeros to the corresponding path coefficients. Real-life applications are also considered, where for the optimal order p≥1 of the fitted CVAR(p) model, order selection is performed with various information criteria.
协方差和次序选择增强的因果向量自回归
针对弱平稳多变量过程,引入了因果向量自回归(CVAR)模型,将同期分量的递归有向图模型和向量自回归模型纵向结合。使用具有不同块大小的块Cholesky分解来求解模型方程,并估计沿有向无环图(DAG)的路径系数。如果DAG是可分解的,即零在其邻接矩阵中形成可约零模式(RZP),则应用协方差选择,将零分配给相应的路径系数。还考虑了实际应用,其中对于拟合的CVAR(p)模型的最优阶数p≥1,使用各种信息准则进行阶数选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信