Combining the cross-entropy algorithm and ∈-constraint method for multiobjective optimization

Q3 Mathematics
Abdelmajid Ezzine, A. Alla, N. Raissi
{"title":"Combining the cross-entropy algorithm and ∈-constraint method for multiobjective optimization","authors":"Abdelmajid Ezzine, A. Alla, N. Raissi","doi":"10.2478/mjpaa-2021-0019","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"299 - 311"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.
结合交叉熵算法和∈约束方法进行多目标优化
摘要本文旨在提出一种新的求解多目标优化问题的混合方法。这种方法是基于全局和局部搜索过程的结合。将交叉熵法作为一种基于随机模型的方法来求解多目标优化问题,并得到全局解的第一精英集。在局部搜索步骤中,∈约束方法将多目标优化问题转化为一系列参数化的单目标优化问题。然后,将序列二次规划(SQP)用于求解导出的单目标优化问题,从而加强和改进全局结果。数值算例验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信