{"title":"Combining the cross-entropy algorithm and ∈-constraint method for multiobjective optimization","authors":"Abdelmajid Ezzine, A. Alla, N. Raissi","doi":"10.2478/mjpaa-2021-0019","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"299 - 311"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.