Critical local well-posedness for the fully nonlinear Peskin problem

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Stephen Cameron, Robert M. Strain
{"title":"Critical local well-posedness for the fully nonlinear Peskin problem","authors":"Stephen Cameron,&nbsp;Robert M. Strain","doi":"10.1002/cpa.22139","DOIUrl":null,"url":null,"abstract":"<p>We study the problem where a one-dimensional elastic string is immersed in a two-dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non-linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space <math>\n <semantics>\n <mrow>\n <msubsup>\n <mover>\n <mi>B</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>T</mi>\n <mo>;</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\dot{B}^{3/2}_{2,1}(\\mathbb {T}; \\mathbb {R}^2)$</annotation>\n </semantics></math>. We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22139","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem where a one-dimensional elastic string is immersed in a two-dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non-linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space B ̇ 2 , 1 3 / 2 ( T ; R 2 ) $\dot{B}^{3/2}_{2,1}(\mathbb {T}; \mathbb {R}^2)$ . We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure.

全非线性Peskin问题的临界局部适定性
研究了一维弹性弦浸入二维稳态斯托克斯流体中的问题。这被称为Stokes浸入边界问题,也被称为Peskin问题。我们考虑具有等粘度和完全非线性张力定律的情况;这个模型被称为全非线性佩斯金问题。在这种情况下,我们证明了任意初始数据在尺度临界Besov空间中的局部时间适定性。此外,我们还证明了解的最优高阶平滑效果。为了证明这一结果,我们导出了描述弦参数化的边界积分方程的新公式,并且我们关键地利用了一个新的抵消结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信