On Instability of the Rayleigh–Bénard Problem Without Thermal Diffusion in a Bounded Domain under $L^1$ -Norm

Pan Zhang, Mengmeng Liu, Fangying Song
{"title":"On Instability of the Rayleigh–Bénard Problem Without Thermal Diffusion in a Bounded Domain under $L^1$ -Norm","authors":"Pan Zhang, Mengmeng Liu, Fangying Song","doi":"10.4208/aam.oa-2020-0060","DOIUrl":null,"url":null,"abstract":". We investigate the thermal instability of a three-dimensional Rayleigh–B´enard (RB for short) problem without thermal diffusion in a bounded domain. First we construct unstable solutions in exponential growth modes for the linear RB problem. Then we derive energy estimates for the nonlinear solutions by a method of a prior energy estimates, and establish a Gronwall-type energy inequality for the nonlinear solutions. Finally, we estimate for the error of L 1 -norm between the both solutions of the linear and nonlinear problems, and prove the existence of escape times of nonlinear solutions. Thus we get the instability of nonlinear solutions under L 1 -norm.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学年刊:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4208/aam.oa-2020-0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We investigate the thermal instability of a three-dimensional Rayleigh–B´enard (RB for short) problem without thermal diffusion in a bounded domain. First we construct unstable solutions in exponential growth modes for the linear RB problem. Then we derive energy estimates for the nonlinear solutions by a method of a prior energy estimates, and establish a Gronwall-type energy inequality for the nonlinear solutions. Finally, we estimate for the error of L 1 -norm between the both solutions of the linear and nonlinear problems, and prove the existence of escape times of nonlinear solutions. Thus we get the instability of nonlinear solutions under L 1 -norm.
L^1$ -范数下有界区域上无热扩散的rayleigh - bsamadard问题的不稳定性
.我们研究了在有界域中没有热扩散的三维Rayleigh–B´enard(简称RB)问题的热不稳定性。首先,我们构造了线性RB问题在指数增长模式下的不稳定解。然后,我们用先验能量估计的方法推导出非线性解的能量估计,并建立了非线性解的Gronwall型能量不等式。最后,我们估计了线性和非线性问题的两个解之间的L1-范数的误差,并证明了非线性解的逃逸时间的存在性。从而得到了L1范数下非线性解的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
544
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信