{"title":"A Family of Complex Nilmanifolds with in finitely Many Real Homotopy Types","authors":"A. Latorre, L. Ugarte, R. Villacampa","doi":"10.1515/coma-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract We find a one-parameter family of non-isomorphic nilpotent Lie algebras ga, with a > [0,∞), of real dimension eight with (strongly non-nilpotent) complex structures. By restricting a to take rational values, we arrive at the existence of infinitely many real homotopy types of 8-dimensional nilmanifolds admitting a complex structure. Moreover, balanced Hermitian metrics and generalized Gauduchon metrics on such nilmanifolds are constructed.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"5 1","pages":"102 - 89"},"PeriodicalIF":0.5000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2018-0004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2018-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract We find a one-parameter family of non-isomorphic nilpotent Lie algebras ga, with a > [0,∞), of real dimension eight with (strongly non-nilpotent) complex structures. By restricting a to take rational values, we arrive at the existence of infinitely many real homotopy types of 8-dimensional nilmanifolds admitting a complex structure. Moreover, balanced Hermitian metrics and generalized Gauduchon metrics on such nilmanifolds are constructed.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.