IWASAWA THEORY FOR p-TORSION CLASS GROUP SCHEMES IN CHARACTERISTIC p

Pub Date : 2021-07-27 DOI:10.1017/nmj.2022.30
J. Booher, Bryden Cais
{"title":"IWASAWA THEORY FOR p-TORSION CLASS GROUP SCHEMES IN CHARACTERISTIC p","authors":"J. Booher, Bryden Cais","doi":"10.1017/nmj.2022.30","DOIUrl":null,"url":null,"abstract":"Abstract We investigate a novel geometric Iwasawa theory for \n${\\mathbf Z}_p$\n -extensions of function fields over a perfect field k of characteristic \n$p>0$\n by replacing the usual study of p-torsion in class groups with the study of p-torsion class group schemes. That is, if \n$\\cdots \\to X_2 \\to X_1 \\to X_0$\n is the tower of curves over k associated with a \n${\\mathbf Z}_p$\n -extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of the p-torsion group scheme in the Jacobian of \n$X_n$\n as \n$n\\rightarrow \\infty $\n . By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of \n$X_n$\n equipped with natural actions of Frobenius and of the Cartier operator V. We formulate and test a number of conjectures which predict striking regularity in the \n$k[V]$\n -module structure of the space \n$M_n:=H^0(X_n, \\Omega ^1_{X_n/k})$\n of global regular differential forms as \n$n\\rightarrow \\infty .$\n For example, for each tower in a basic class of \n${\\mathbf Z}_p$\n -towers, we conjecture that the dimension of the kernel of \n$V^r$\n on \n$M_n$\n is given by \n$a_r p^{2n} + \\lambda _r n + c_r(n)$\n for all n sufficiently large, where \n$a_r, \\lambda _r$\n are rational constants and \n$c_r : {\\mathbf Z}/m_r {\\mathbf Z} \\to {\\mathbf Q}$\n is a periodic function, depending on r and the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on \n${\\mathbf Z}_p$\n -towers of curves, and we prove our conjectures in the case \n$p=2$\n and \n$r=1$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We investigate a novel geometric Iwasawa theory for ${\mathbf Z}_p$ -extensions of function fields over a perfect field k of characteristic $p>0$ by replacing the usual study of p-torsion in class groups with the study of p-torsion class group schemes. That is, if $\cdots \to X_2 \to X_1 \to X_0$ is the tower of curves over k associated with a ${\mathbf Z}_p$ -extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of the p-torsion group scheme in the Jacobian of $X_n$ as $n\rightarrow \infty $ . By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of $X_n$ equipped with natural actions of Frobenius and of the Cartier operator V. We formulate and test a number of conjectures which predict striking regularity in the $k[V]$ -module structure of the space $M_n:=H^0(X_n, \Omega ^1_{X_n/k})$ of global regular differential forms as $n\rightarrow \infty .$ For example, for each tower in a basic class of ${\mathbf Z}_p$ -towers, we conjecture that the dimension of the kernel of $V^r$ on $M_n$ is given by $a_r p^{2n} + \lambda _r n + c_r(n)$ for all n sufficiently large, where $a_r, \lambda _r$ are rational constants and $c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$ is a periodic function, depending on r and the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on ${\mathbf Z}_p$ -towers of curves, and we prove our conjectures in the case $p=2$ and $r=1$ .
分享
查看原文
特征p-扭转类群方案的IWASAWA理论
摘要本文用p-扭转类群方案的研究取代了通常的类群中p-扭转的研究,研究了特征为$p>0$的完美域k上${\mathbf Z}_p$ -函数域扩展的一个新的几何Iwasawa理论。也就是说,如果$\cdots \to X_2 \to X_1 \to X_0$是k上的曲线塔,与在有限非空位置集合上完全分叉的函数场的${\mathbf Z}_p$ -扩展相关联,我们研究了$X_n$为$n\rightarrow \infty $的雅可比矩阵中p-扭转群格式的增长。根据dieudonn理论,这相当于研究了具有Frobenius和Cartier算子v的自然作用的$X_n$的第一个de Rham上同群。我们制定并测试了一些猜想,这些猜想预测了整体正则微分形式$n\rightarrow \infty .$的空间$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$的$k[V]$ -模块结构中的惊人规律性。例如,对于${\mathbf Z}_p$ -塔的基本类中的每个塔,我们推测,对于所有足够大的n, $M_n$上$V^r$核的维数由$a_r p^{2n} + \lambda _r n + c_r(n)$给出,其中$a_r, \lambda _r$是有理数常数,$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$是一个周期函数,取决于r和塔。为了为这些猜想提供证据,我们收集了大量的实验数据,这些数据基于新的和更有效的算法,用于处理${\mathbf Z}_p$ -曲线塔上的微分,我们在$p=2$和$r=1$的情况下证明了我们的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信