{"title":"Statistical Significance Testing for Natural Language Processing","authors":"Edwin Simpson","doi":"10.1162/coli_r_00388","DOIUrl":null,"url":null,"abstract":"Like any other science, research in natural language processing (NLP) depends on the ability to draw correct conclusions from experiments. A key tool for this is statistical significance testing: We use it to judge whether a result provides meaningful, generalizable findings or should be taken with a pinch of salt. When comparing new methods against others, performance metrics often differ by only small amounts, so researchers turn to significance tests to show that improved models are genuinely better. Unfortunately, this reasoning often fails because we choose inappropriate significance tests or carry them out incorrectly, making their outcomes meaningless. Or, the test we use may fail to indicate a significant result when a more appropriate test would find one. NLP researchers must avoid these pitfalls to ensure that their evaluations are sound and ultimately avoid wasting time and money through incorrect conclusions. This book guides NLP researchers through the whole process of significance testing, making it easy to select the right kind of test by matching canonical NLP tasks to specific significance testing procedures. As well as being a handbook for researchers, the book provides theoretical background on significance testing, includes new methods that solve problems with significance tests in the world of deep learning and multidataset benchmarks, and describes the open research problems of significance testing for NLP. The book focuses on the task of comparing one algorithm with another. At the core of this is the p-value, the probability that a difference at least as extreme as the one we observed could occur by chance. If the p-value falls below a predetermined threshold, the result is declared significant. Leaving aside the fundamental limitation of turning the validity of results into a binary question with an arbitrary threshold, to be a valid statistical significance test, the p-value must be computed in the right way. The book describes the two crucial properties of an appropriate significance test: The test must be both valid and powerful. Validity refers to the avoidance of type 1 errors, in which the result is incorrectly declared significant. Common mistakes that lead to type 1 errors include deploying tests that make incorrect assumptions, such as independence between data points. The power of a test refers to its ability to detect a significant result and therefore to avoid type 2 errors. Here, knowledge of the data and experiment must be used to choose a test that makes the correct assumptions. There is a trade-off between validity and power, but for the most common NLP tasks (language modeling, sequence labeling, translation, etc.), there are clear choices of tests that provide a good balance.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"46 1","pages":"905-908"},"PeriodicalIF":3.7000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/coli_r_00388","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_r_00388","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 36
Abstract
Like any other science, research in natural language processing (NLP) depends on the ability to draw correct conclusions from experiments. A key tool for this is statistical significance testing: We use it to judge whether a result provides meaningful, generalizable findings or should be taken with a pinch of salt. When comparing new methods against others, performance metrics often differ by only small amounts, so researchers turn to significance tests to show that improved models are genuinely better. Unfortunately, this reasoning often fails because we choose inappropriate significance tests or carry them out incorrectly, making their outcomes meaningless. Or, the test we use may fail to indicate a significant result when a more appropriate test would find one. NLP researchers must avoid these pitfalls to ensure that their evaluations are sound and ultimately avoid wasting time and money through incorrect conclusions. This book guides NLP researchers through the whole process of significance testing, making it easy to select the right kind of test by matching canonical NLP tasks to specific significance testing procedures. As well as being a handbook for researchers, the book provides theoretical background on significance testing, includes new methods that solve problems with significance tests in the world of deep learning and multidataset benchmarks, and describes the open research problems of significance testing for NLP. The book focuses on the task of comparing one algorithm with another. At the core of this is the p-value, the probability that a difference at least as extreme as the one we observed could occur by chance. If the p-value falls below a predetermined threshold, the result is declared significant. Leaving aside the fundamental limitation of turning the validity of results into a binary question with an arbitrary threshold, to be a valid statistical significance test, the p-value must be computed in the right way. The book describes the two crucial properties of an appropriate significance test: The test must be both valid and powerful. Validity refers to the avoidance of type 1 errors, in which the result is incorrectly declared significant. Common mistakes that lead to type 1 errors include deploying tests that make incorrect assumptions, such as independence between data points. The power of a test refers to its ability to detect a significant result and therefore to avoid type 2 errors. Here, knowledge of the data and experiment must be used to choose a test that makes the correct assumptions. There is a trade-off between validity and power, but for the most common NLP tasks (language modeling, sequence labeling, translation, etc.), there are clear choices of tests that provide a good balance.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.