Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection

IF 2.6 3区 生物学 Q2 PLANT SCIENCES
Ana Paula Rosa, Teresa Dias, A. Mouazen, C. Cruz, M. Santana
{"title":"Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection","authors":"Ana Paula Rosa, Teresa Dias, A. Mouazen, C. Cruz, M. Santana","doi":"10.1080/17429145.2023.2178680","DOIUrl":null,"url":null,"abstract":"ABSTRACT Considering the more frequent and longer drought events due to climate change, improving plant drought tolerance became a priority. The search for plant growth promoting rhizobacteria (PGPR) able to improve plant drought tolerance has been long addressed, but with inconsistent results. Here, we summarize the PGPR mechanisms that improve plant drought tolerance, identify the pitfalls in current PGPR isolation and selection routines, and discuss the key points to define new strategies to get optimal PGPR for plant drought tolerance. Drought and host genotype impact rhizo-communities, and host-mediated selection strategies may be used to obtain a drought-adapted rhizomicrobiome that can be a source for PGPR isolation. Alternatively, an integrated omics-level analysis can improve our knowledge on the mechanisms of rhizomicrobiome construction, and a targeted approach can be designed, which will be focused on key PGP traits. New strategies to build PGPR consortia for improvement of plant drought tolerance are also suggested.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2023.2178680","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Considering the more frequent and longer drought events due to climate change, improving plant drought tolerance became a priority. The search for plant growth promoting rhizobacteria (PGPR) able to improve plant drought tolerance has been long addressed, but with inconsistent results. Here, we summarize the PGPR mechanisms that improve plant drought tolerance, identify the pitfalls in current PGPR isolation and selection routines, and discuss the key points to define new strategies to get optimal PGPR for plant drought tolerance. Drought and host genotype impact rhizo-communities, and host-mediated selection strategies may be used to obtain a drought-adapted rhizomicrobiome that can be a source for PGPR isolation. Alternatively, an integrated omics-level analysis can improve our knowledge on the mechanisms of rhizomicrobiome construction, and a targeted approach can be designed, which will be focused on key PGP traits. New strategies to build PGPR consortia for improvement of plant drought tolerance are also suggested.
在干旱条件下寻找提高作物生产力和可持续性的最佳微生物——一种结构化的反映
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信