Finite Minimal Simple Groups Non-satisfying the Basis Property

IF 1 Q1 MATHEMATICS
Ahmad Al Khalaf, I. Taha
{"title":"Finite Minimal Simple Groups Non-satisfying the Basis Property","authors":"Ahmad Al Khalaf, I. Taha","doi":"10.29020/nybg.ejpam.v16i3.4871","DOIUrl":null,"url":null,"abstract":"Let G be a finite group. We say that G has the Basis Property if every subgroup H of G has a minimal generating set (basis), and any two bases of H have the same cardinality. A group G is called minimal not satisfying the Basis Property if it does not satisfy the Basis Property, but all its proper subgroups satisfy the Basis Property. We prove that the following groups PSL(2, 5) ∼A5, PSL(2, 8) , are minimal groups non satisfying the Basis Property, but the groups PSL(2, 9), PSL(2, 17) and PSL(3, 4) are not minimal and not satisfying the Basis Property.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite group. We say that G has the Basis Property if every subgroup H of G has a minimal generating set (basis), and any two bases of H have the same cardinality. A group G is called minimal not satisfying the Basis Property if it does not satisfy the Basis Property, but all its proper subgroups satisfy the Basis Property. We prove that the following groups PSL(2, 5) ∼A5, PSL(2, 8) , are minimal groups non satisfying the Basis Property, but the groups PSL(2, 9), PSL(2, 17) and PSL(3, 4) are not minimal and not satisfying the Basis Property.
不满足基性质的有限极小单群
设G是一个有限群。我们说G具有基性质,如果G的每个子群H都有一个极小生成集(基),并且H的任意两个基具有相同的基数。群G称为不满足基性质的极小群,如果它不满足基属性,但它的所有子群都满足基属性。我们证明了以下群PSL(2,5)~A5,PSL(2,8)是不满足基性质的极小群,但群PSL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信