Generative Pre-Training from Molecules

S. Adilov
{"title":"Generative Pre-Training from Molecules","authors":"S. Adilov","doi":"10.33774/chemrxiv-2021-5fwjd","DOIUrl":null,"url":null,"abstract":"SMILES is a line notation for entering and representing molecules. Being inherently a language construct, it allows estimating molecular data in a self-supervised fashion by employing machine learning methods for natural language processing (NLP). The recent success of attention-based neural networks in NLP has made large-corpora transformer pretraining a de facto standard for learning representations and transferring knowledge to downstream tasks. In this work, we attempt to adapt transformer capabilities to a large SMILES corpus by constructing a GPT-2-like language model. We experimentally show that a pretrained causal transformer captures general knowledge that can be successfully transferred to such downstream tasks as focused molecule generation and single-/multi-output molecular-property prediction. For each task, we freeze model parameters and attach trainable lightweight networks between attention blocks—adapters—as alternative to fine-tuning. With a relatively modest setup, our transformer outperforms the recently proposed ChemBERTa transformer and approaches state-of-the-art MoleculeNet and Chemprop results. Overall, transformers pretrained on SMILES corpora are promising alternatives that do not require handcrafted feature engineering, make few assumptions about structure of data, and scale well with the pretraining data size.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-5fwjd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

SMILES is a line notation for entering and representing molecules. Being inherently a language construct, it allows estimating molecular data in a self-supervised fashion by employing machine learning methods for natural language processing (NLP). The recent success of attention-based neural networks in NLP has made large-corpora transformer pretraining a de facto standard for learning representations and transferring knowledge to downstream tasks. In this work, we attempt to adapt transformer capabilities to a large SMILES corpus by constructing a GPT-2-like language model. We experimentally show that a pretrained causal transformer captures general knowledge that can be successfully transferred to such downstream tasks as focused molecule generation and single-/multi-output molecular-property prediction. For each task, we freeze model parameters and attach trainable lightweight networks between attention blocks—adapters—as alternative to fine-tuning. With a relatively modest setup, our transformer outperforms the recently proposed ChemBERTa transformer and approaches state-of-the-art MoleculeNet and Chemprop results. Overall, transformers pretrained on SMILES corpora are promising alternatives that do not require handcrafted feature engineering, make few assumptions about structure of data, and scale well with the pretraining data size.
分子生成预训练
SMILES是一种用于输入和表示分子的线符号。作为一种固有的语言结构,它允许通过使用机器学习方法进行自然语言处理(NLP),以自我监督的方式估计分子数据。最近基于注意力的神经网络在NLP中的成功使大型语料库转换器预训练成为学习表征和将知识转移到下游任务的事实标准。在这项工作中,我们试图通过构建一个类似GPT-2的语言模型,将transformer功能调整为大型SMILES语料库。我们的实验表明,预训练的因果变换器捕获了可以成功转移到下游任务的一般知识,如聚焦分子生成和单/多输出分子性质预测。对于每个任务,我们冻结模型参数,并在注意力块(适配器)之间附加可训练的轻量级网络,作为微调的替代方案。通过相对适中的设置,我们的转换器优于最近提出的ChemBERTa转换器,并接近最先进的MoleculeNet和Chemprop结果。总的来说,在SMILES语料库上预训练的transformers是很有前途的替代品,不需要手工制作的特征工程,对数据结构几乎没有假设,并且可以很好地扩展预训练的数据大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信