{"title":"On Near-Horizon Maximum Brightness of Cloudless Sky","authors":"V. Bakhanov, A. Demakova, V. Titov","doi":"10.22449/0233-7584-2018-6-477-488","DOIUrl":null,"url":null,"abstract":"На основе модели однократного рассеяния солнечного света рассматривается угловая структура яркости безоблачного неба. Показано, что в рамках данной модели описывается так называемый пригоризонтный максимум яркости неба. Анализируется физический механизм возникновения этого максимума, объясняется зависимость его положения от длины волны света. При увеличении длины волны света максимум яркости безоблачного неба сдвигается к горизонту. Это связано с тем, что оптическая толщина атмосферы уменьшается с увеличением длины волны. Проводится сравнение с экспериментальными угловыми характеристиками яркости неба, полученными с помощью цифровых фотоснимков горизонта, сделанных на океанологической платформе. Анализируется возможность оценки оптической толщины атмосферы по угловому положению пригоризонтного максимума яркости неба. Предложен алгоритм оценки указанной характеристики для некоторого значения длины волны света, основанный на графическом «обращении» зависимости углового распределения яркости безоблачного неба от оптической толщины атмосферы. С помощью предложенного алгоритма по цифровым фотоснимкам горизонта моря получены оценки оптических толщин атмосферы для трех спектральных диапазонов света R, G, B. Анализируется «устойчивость» алгоритма к ошибкам в определении азимута солнца относительно наблюдателя. Полученные оценки оптических толщин атмосферы практически совпадают с известными результатами натурных измерений аналогичных характеристик. Изложенный подход к восстановлению значений оптической толщины атмосферы позволяет развить используемую модель яркости неба с учетом рассеяния света более высоких кратностей. Полученные значения оптических толщин можно использовать в моделях углового распределения яркости безоблачного неба для оценки статистических характеристик волнения дистанционным оптическим методом.","PeriodicalId":43550,"journal":{"name":"Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22449/0233-7584-2018-6-477-488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 1
Abstract
На основе модели однократного рассеяния солнечного света рассматривается угловая структура яркости безоблачного неба. Показано, что в рамках данной модели описывается так называемый пригоризонтный максимум яркости неба. Анализируется физический механизм возникновения этого максимума, объясняется зависимость его положения от длины волны света. При увеличении длины волны света максимум яркости безоблачного неба сдвигается к горизонту. Это связано с тем, что оптическая толщина атмосферы уменьшается с увеличением длины волны. Проводится сравнение с экспериментальными угловыми характеристиками яркости неба, полученными с помощью цифровых фотоснимков горизонта, сделанных на океанологической платформе. Анализируется возможность оценки оптической толщины атмосферы по угловому положению пригоризонтного максимума яркости неба. Предложен алгоритм оценки указанной характеристики для некоторого значения длины волны света, основанный на графическом «обращении» зависимости углового распределения яркости безоблачного неба от оптической толщины атмосферы. С помощью предложенного алгоритма по цифровым фотоснимкам горизонта моря получены оценки оптических толщин атмосферы для трех спектральных диапазонов света R, G, B. Анализируется «устойчивость» алгоритма к ошибкам в определении азимута солнца относительно наблюдателя. Полученные оценки оптических толщин атмосферы практически совпадают с известными результатами натурных измерений аналогичных характеристик. Изложенный подход к восстановлению значений оптической толщины атмосферы позволяет развить используемую модель яркости неба с учетом рассеяния света более высоких кратностей. Полученные значения оптических толщин можно использовать в моделях углового распределения яркости безоблачного неба для оценки статистических характеристик волнения дистанционным оптическим методом.