Adjusted Extreme Conditional Quantile Autoregression with Application to Risk Measurement

IF 1 Q3 STATISTICS & PROBABILITY
Martin M. Kithinji, P. Mwita, Ananda O. Kube
{"title":"Adjusted Extreme Conditional Quantile Autoregression with Application to Risk Measurement","authors":"Martin M. Kithinji, P. Mwita, Ananda O. Kube","doi":"10.1155/2021/6697120","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an extreme conditional quantile estimator. Derivation of the estimator is based on extreme quantile autoregression. A noncrossing restriction is added during estimation to avert possible quantile crossing. Consistency of the estimator is derived, and simulation results to support its validity are also presented. Using Average Root Mean Squared Error (ARMSE), we compare the performance of our estimator with the performances of two existing extreme conditional quantile estimators. Backtest results of the one-day-ahead conditional Value at Risk forecasts are also given.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":"1-10"},"PeriodicalIF":1.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6697120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose an extreme conditional quantile estimator. Derivation of the estimator is based on extreme quantile autoregression. A noncrossing restriction is added during estimation to avert possible quantile crossing. Consistency of the estimator is derived, and simulation results to support its validity are also presented. Using Average Root Mean Squared Error (ARMSE), we compare the performance of our estimator with the performances of two existing extreme conditional quantile estimators. Backtest results of the one-day-ahead conditional Value at Risk forecasts are also given.
校正极端条件分位数自回归在风险测量中的应用
在本文中,我们提出了一个极端条件分位数估计量。估计量的推导是基于极端分位数自回归。在估计期间添加了非交叉限制,以避免可能的分位数交叉。推导了估计量的一致性,并给出了支持其有效性的仿真结果。使用平均均方根误差(ARMSE),我们将我们的估计器的性能与现有的两个极端条件分位数估计器进行了比较。文中还给出了提前一天条件风险价值预测的回测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信