{"title":"Strengthening network slicing for Industrial Internet with deep reinforcement learning","authors":"","doi":"10.1016/j.dcan.2023.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain. Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology. Guaranteeing robust network slicing is essential for Industrial Internet, but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions (NFs) composing the slice. Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties. Towards this end, we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements. State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution. Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864823001153/pdfft?md5=9caf0e49b3bb245707180b54bcf4caac&pid=1-s2.0-S2352864823001153-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001153","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain. Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology. Guaranteeing robust network slicing is essential for Industrial Internet, but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions (NFs) composing the slice. Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties. Towards this end, we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements. State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution. Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.