MULTIPLIERS AND CHARACTERIZATION OF THE DUAL OF NEVANLINNA-TYPE SPACES

Pub Date : 2023-09-07 DOI:10.1017/nmj.2023.24
Mieczysław Mastyło, Bartosz Staniów
{"title":"MULTIPLIERS AND CHARACTERIZATION OF THE DUAL OF NEVANLINNA-TYPE SPACES","authors":"Mieczysław Mastyło, Bartosz Staniów","doi":"10.1017/nmj.2023.24","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>The Nevanlinna-type spaces <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline1.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of analytic functions on the disk in the complex plane generated by strongly convex functions <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline2.png\" />\n\t\t<jats:tex-math>\n$\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> in the sense of Rudin are studied. We show for some special class of strongly convex functions asymptotic bounds on the growth of the Taylor coefficients of a function in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline3.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and use these to characterize the coefficient multipliers from <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline4.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> into the Hardy spaces <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline5.png\" />\n\t\t<jats:tex-math>\n$H^p$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline6.png\" />\n\t\t<jats:tex-math>\n$0<p\\leqslant \\infty $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. As a by-product, we prove a representation of continuous linear functionals on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline7.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Nevanlinna-type spaces $N_\varphi $ of analytic functions on the disk in the complex plane generated by strongly convex functions $\varphi $ in the sense of Rudin are studied. We show for some special class of strongly convex functions asymptotic bounds on the growth of the Taylor coefficients of a function in $N_\varphi $ and use these to characterize the coefficient multipliers from $N_\varphi $ into the Hardy spaces $H^p$ with $0 . As a by-product, we prove a representation of continuous linear functionals on $N_\varphi $ .
分享
查看原文
nevanlinna型空间的乘数和对偶的表征
研究了由Rudin意义上的强凸函数$\varphi $生成的复平面圆盘上解析函数的nevanlinna型空间$N_\varphi $。对于一类特殊的强凸函数,我们给出了函数在$N_\varphi $中泰勒系数增长的渐近界,并利用这些渐近界刻画了从$N_\varphi $到$H^p$的Hardy空间的系数乘子。作为副产品,我们证明了连续线性泛函在$N_\varphi $上的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信