A-Davis-Wielandt-Berezin radius inequalities

IF 0.7 Q2 MATHEMATICS
V. Gürdal, M. Huban
{"title":"A-Davis-Wielandt-Berezin radius inequalities","authors":"V. Gürdal, M. Huban","doi":"10.31801/cfsuasmas.1107024","DOIUrl":null,"url":null,"abstract":"We consider operator $V$ on the reproducing kernel Hilbert space $\\mathcal{H}=\\mathcal{H}(\\Omega)$ over some set $\\Omega$ with the reproducing kernel \n$K_{\\mathcal{H},\\lambda}(z)=K(z,\\lambda)$ and define A-Davis-Wielandt-Berezin radius $\\eta_{A}(V)$ by the formula \n$\\eta_{A}(V):=sup\\{\\sqrt{| \\langle Vk_{\\mathcal{H},\\lambda},k_{\\mathcal{H},\\lambda} \\rangle_{A}|^{2}+\\|Vk_{\\mathcal{H},\\lambda}\\|_{A}^{4}}:\\lambda \\in \\Omega\\}$\nand $\\tilde{V}$ is the Berezin symbol of $V$ where any positive operator $A$-induces a semi-inner product on $\\mathcal{H}$ is defined by $\\langle x,y \\rangle_{A}=\\langle Ax,y \\rangle$ for $x,y \\in \\mathcal{H}.$ We study equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned above. We establish some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of reproducing kernel Hilbert space operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1107024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We consider operator $V$ on the reproducing kernel Hilbert space $\mathcal{H}=\mathcal{H}(\Omega)$ over some set $\Omega$ with the reproducing kernel $K_{\mathcal{H},\lambda}(z)=K(z,\lambda)$ and define A-Davis-Wielandt-Berezin radius $\eta_{A}(V)$ by the formula $\eta_{A}(V):=sup\{\sqrt{| \langle Vk_{\mathcal{H},\lambda},k_{\mathcal{H},\lambda} \rangle_{A}|^{2}+\|Vk_{\mathcal{H},\lambda}\|_{A}^{4}}:\lambda \in \Omega\}$ and $\tilde{V}$ is the Berezin symbol of $V$ where any positive operator $A$-induces a semi-inner product on $\mathcal{H}$ is defined by $\langle x,y \rangle_{A}=\langle Ax,y \rangle$ for $x,y \in \mathcal{H}.$ We study equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned above. We establish some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of reproducing kernel Hilbert space operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.
A-Davis-Wielandt-Berezin半径不等式
我们考虑算子 $V$ 在再现核希尔伯特空间上 $\mathcal{H}=\mathcal{H}(\Omega)$ 在某个集合上 $\Omega$ 用复制内核 $K_{\mathcal{H},\lambda}(z)=K(z,\lambda)$ 定义A-Davis-Wielandt-Berezin半径 $\eta_{A}(V)$ 根据公式 $\eta_{A}(V):=sup\{\sqrt{| \langle Vk_{\mathcal{H},\lambda},k_{\mathcal{H},\lambda} \rangle_{A}|^{2}+\|Vk_{\mathcal{H},\lambda}\|_{A}^{4}}:\lambda \in \Omega\}$和 $\tilde{V}$ 别列津象征着什么 $V$ 其中任何正算子 $A$-诱导上的半内积 $\mathcal{H}$ 定义为 $\langle x,y \rangle_{A}=\langle Ax,y \rangle$ 为了 $x,y \in \mathcal{H}.$ 我们研究了上述A-Davis-Wielandt-Berezin半径下界的等式。建立了复现核Hilbert空间算子的A-Davis-Wielandt-Berezin半径的下界和上界。此外,我们还得到了两个有界线性算子和的A-Davis-Wielandt-Berezin半径的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信