{"title":"CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS MODULO p^2","authors":"Aeran Kim","doi":"10.46298/cm.10767","DOIUrl":null,"url":null,"abstract":"In this article, we extend Z. H. Sun's congruences concerning Legendre polynomials P p−1 2 (x) to P p+1 2 (x) for odd prime p, which enables us to deduce some congruences resembling p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2).\n 이 논문에서 우리는 Z. H. Sun의 르장드르 다항식의 합동식 P p−1 2 (x) 에서 P p+1 2 (x) (단, p는 소수) 까지를 이용해서 이 합동식과 비슷한 합동식 p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2) 을 유도한다.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we extend Z. H. Sun's congruences concerning Legendre polynomials P p−1 2 (x) to P p+1 2 (x) for odd prime p, which enables us to deduce some congruences resembling p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2).
이 논문에서 우리는 Z. H. Sun의 르장드르 다항식의 합동식 P p−1 2 (x) 에서 P p+1 2 (x) (단, p는 소수) 까지를 이용해서 이 합동식과 비슷한 합동식 p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2) 을 유도한다.
In this article, we extend Z. H. Sun's congruences concerning Legendre polynomials P P - 1 2 (x) to P P +1 2 (x) for odd prime P;which enables us to deduce some congruences resembling p + 1 2∑k = 0 4pk 16 k (2k + 4k 2 - 1, - 1) 2 (2k k) 2 (mod p 2)。这篇论文中,我们z·h·sun的章吱扭다항식的联合式p 2 (x)在p - 1, p = p + 1 2 (x)段,p是质数)到利用类似联合式的联合式p + 1 2∑k = 0 4pk 16 k (2k + 4k 2 - 1, - 1) 2 (2k k) 2 (mod p 2)诱导的。
期刊介绍:
Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.