Rank-two solenoidal endomorphisms

Pub Date : 2023-02-26 DOI:10.12775/tmna.2022.063
K. Ha, Jong Bum Lee
{"title":"Rank-two solenoidal endomorphisms","authors":"K. Ha, Jong Bum Lee","doi":"10.12775/tmna.2022.063","DOIUrl":null,"url":null,"abstract":"Let $G$ be a torsion-free abelian group of rank two and let\n$\\phi$ be an endomorphism of $G$, called a rank-two \\emph{solenoidal endomorphism}.\nThen it is represented by a $2\\times 2$-matrix $M_\\phi$ with rational entries.\nThe purpose of this article is to prove the following:\nThe group, $\\mathrm{coker}(\\phi)$, of the cokernut of $\\phi$ is finite\nif and only if $M_\\phi$ is nonsingular, and if it is so, then\nwe give an explicit formula for the order of $\\mathrm{coker}(\\phi)$, $[G:\\mathrm{im}(\\phi)]$,\nin terms of $p$-adic absolute values of the determinant of $M_\\phi$.\nSince $G$ is abelian, the Reidemeister number of $\\phi$ is equal to the order of the cokernut of $\\mathrm{id}-\\phi$ and, when it is finite, \nit is equal to the number of fixed points of the Pontryagin dual $\\widehat\\phi$ of $\\phi$.\nThereby, we solve completely the problem raised in \\cite{Miles} of finding the possible sequences of periodic point counts\nfor \\emph{all} endomorphisms of the rank-two solenoids.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a torsion-free abelian group of rank two and let $\phi$ be an endomorphism of $G$, called a rank-two \emph{solenoidal endomorphism}. Then it is represented by a $2\times 2$-matrix $M_\phi$ with rational entries. The purpose of this article is to prove the following: The group, $\mathrm{coker}(\phi)$, of the cokernut of $\phi$ is finite if and only if $M_\phi$ is nonsingular, and if it is so, then we give an explicit formula for the order of $\mathrm{coker}(\phi)$, $[G:\mathrm{im}(\phi)]$, in terms of $p$-adic absolute values of the determinant of $M_\phi$. Since $G$ is abelian, the Reidemeister number of $\phi$ is equal to the order of the cokernut of $\mathrm{id}-\phi$ and, when it is finite, it is equal to the number of fixed points of the Pontryagin dual $\widehat\phi$ of $\phi$. Thereby, we solve completely the problem raised in \cite{Miles} of finding the possible sequences of periodic point counts for \emph{all} endomorphisms of the rank-two solenoids.
分享
查看原文
秩二螺线管自同态
设$G$为二阶无扭转阿贝尔群,设$\phi$为$G$的自同态,称为二阶\emph{螺线自同态}。然后用含有有理数项的$2\times 2$ -矩阵$M_\phi$表示。本文的目的是证明如下:$\phi$的椰子的群$\mathrm{coker}(\phi)$是有限的当且仅当$M_\phi$是非奇异的,如果是,那么我们给出一个关于$M_\phi$的行列式的$p$进数绝对值的$\mathrm{coker}(\phi)$, $[G:\mathrm{im}(\phi)]$的阶的显式公式。因为$G$是阿贝尔的,$\phi$的Reidemeister数等于$\mathrm{id}-\phi$的cokernut的阶数,当它是有限的时候,等于$\phi$的Pontryagin对偶$\widehat\phi$的不动点的个数,从而完全解决了\cite{Miles}中提出的寻找二阶螺线管的\emph{所有}自同态的周期点计数的可能序列的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信